POOR LEGIBILITY ONE OR MORE PAGES IN THIS DOCUMENT ARE DIFFICULT TO READ DUE TO THE QUALITY OF THE ORIGINAL

RPW G94-0150 105-0263

> SAN GABRIEL VALLEY 15039

First Quarter Groundwater Monitoring
of 1994
at
Stoody Company Facility
Industry, California
for
Thermadyne Holdings Corporation
St. Louis, Missouri

Clayton Project No. 50923.03

May 23, 1994

OF THE CONTROL OF THE

5785 Corporate Avenue Suite 150 Cypress, CA 90630 (714) 229-4806 Fax (714) 229-4805

First Quarter Groundwater Monitoring
of 1994
at
Stoody Company Facility
Industry, California
for
Thermadyne Holdings Corporation
St. Louis, Missouri

Clayton Project No. 50923.03

May 23, 1994

CONTENTS

<u>Section</u>		<u>Page</u>
1.0	INTRODUCTION	. 1
1.1	OBJECTIVES	. 1
1.2	SCOPE OF WORK	. 1
2.0	BACKGROUND	. 2
3.0	MONITORING ACTIVITIES	. 2
3.1	FIELD WORK	. 2
3.1.1	Groundwater Measurements	. 2
3.1.2	Groundwater Purging and Sampling	. 2
3.2	ANALYTICAL METHODS	. 3
4.0	FIELD PROCEDURES	. 3
4.1	SAMPLING PROCEDURES	
4.2	WASTE MANAGEMENT	
4.3	DECONTAMINATION PROCEDURES	. 4
4.4	WELL-SOUNDING PROCEDURES	. 4
5.0	MONITORING RESULTS	. 4
5.1	GROUNDWATER POTENTIOMETRIC SURFACE MAPS	4
5.2	ANALYTICAL RESULTS	. 4
6.0	DISCUSSION AND CONCLUSIONS	. 6
6.1	TURBIDITY	
6.2	VOLATILE ORGANIC COMPOUNDS	
7.0	SCHEDULE FOR NEXT GROUNDWATER MONITORING EVEN	<u>IT</u> 6
8.0	<u>LIMITATIONS</u>	. 7
9.0	REFERENCES	8

CONTENTS (CONTINUED)

Figures

1 General Site Location and Topography 2 Monitoring Well Location Map 3 Groundwater Flow Direction Map 4 Concentrations of PCE, TCE, DCE and 1,1,1-TCA in MW-1 5 Concentrations of PCE, TCE, DCE and 1,1,1-TCA in MW-2 6 Concentrations of PCE, TCE, DCE and 1,1,1-TCA in MW-3 7 Concentrations of PCE, TCE, DCE and 1,1,1-TCA in MW-4 8 Concentrations of PCE, TCE, DCE and 1,1,1-TCA in MW-5 9 Concentrations of PCE in MW-1, MW-2, MW-3, MW-4, and MW-5 10 Concentrations of TCE in MW-1, MW-2, MW-3, MW-4, and MW-5

Concentrations of DCE in MW-1, MW-2, MW-3, MW-4, and MW-5

Tables

11

- 1 Summary Table of Results by EPA Method 524.2 for VOCs
- 2 Groundwater Monitoring Well Data
- 3 Summary Table of Groundwater Elevations
- 4 Summary Table of Results by EPA Method 180.1 for Turbidity
- 5 Historical Concentrations of PCE, TCE, DCE and 1,1,1-TCA

Appendices

- A Groundwater Sampling Forms
- B Laboratory Reports and Chain-of-Custody Forms
- C Hazardous Waste Manifest

1.0 INTRODUCTION

The Stoody Company retained Clayton Environmental Consultants, Inc., on September 9, 1993, to perform quarterly groundwater monitoring for each of the five groundwater monitoring wells at the Stoody Company, located at 16425 East Gale Avenue, Industry, California (Figure 1, Appendix A).

The work was performed in accordance with the Terms and Conditions outlined in Clayton's Proposal No. 93-SEE-097, dated September 2, 1993, and under the guidance of the California Regional Water Quality Control Board (CRWQCB) Los Angeles Region (File No. 105.0263).

1.1 OBJECTIVES

Clayton's objective for this fourth quarter were:

- Evaluate the groundwater flow gradient for each area of concern.
- Evaluate the chemical groundwater quality in each monitoring well.

1.2 SCOPE OF WORK

Clayton completed the following scope of work to accomplish its objectives:

- Measured the depth to water and total depth of each monitoring well.
- Recorded Ph, temperature, and conductivity of the groundwater a minimum of four times during purging.
- Purged at least 3 casing volumes of groundwater from each monitoring well.
- Collected groundwater samples from the monitoring wells at the site and analyzed the samples for volatile organic compounds (VOCs) using EPA Method 524.2. The results of the chemical analyses for the last six quarters tested are summarized in Table 1.
- Contained purged groundwater in labeled DOT-approved, 55-gallon drums at the wellhead for appropriate disposal based on the laboratory results from each specific monitoring well.
- Prepared a quarterly groundwater monitoring report.

Sampling was conducted under the supervision of a California Registered Geologist with at least 5 years of hydrogeologic investigation experience. A workplan was prepared and submitted to the CRWQCB on October 19, 1988 (Clayton, 1988) outlining the scope of the quarterly monitoring program. The CRWQCB approved

the workplan for implementation on January 11, 1989.

2.0 BACKGROUND

Clayton has performed subsurface investigations and quarterly groundwater monitoring at the Stoody Company facility since 1989. The Stoody Company ceased manufacturing welding products at the subject site in November 1991. Since that time the facility has been partially vacant and partially used as a warehouse.

The subject report presents the groundwater sampling results of the last quarterly sampling event conducted on March 4, 1994 as well as a historical summary of the concentrations for three key compounds: Tetracholroethene (PCE), Trichloroethene (TCE) and 1,1-Dichloroethene (DCE), as they were detected above the MCLs since the groundwater investigation at the site began in 1989.

The historical summary of all the groundwater sampling events are presented on this report because this report represents the final quarterly report for the Stoody facility pending a response to the request for closure presented by Clayton Environmental on behalf of the Stoody Company.

The subject closure was proposed by Clayton Environmental in a meeting conducted on April 26, 1994 attended by Mr. Eric Nupin and Ms. Rueen-Fang Wang from the CRWQCB, Mr Gustavo Valdivia and Ms. Kathleen Williams from Clayton, and Mr. Martin Casper and Ms. Stephanie Josephson representing the Stoody Company. Clayton is submitting the request for final closure in a letter attached to this report.

3.0 MONITORING ACTIVITIES

The following sections present a description of field work and laboratory analyses that were used to meet the objectives of the quarterly groundwater program. Field activities for the first quarter 1994 sampling event were conducted on March 4, 1994.

3.1 FIELD WORK

3.1.1 <u>Groundwater Measurements</u>

Clayton measured and recorded the depth to groundwater in each monitoring well once during the first quarter 1994. The depth to groundwater, was measured and recorded on a groundwater sampling form. The groundwater sampling forms are in Appendix A.

3.1.2 Groundwater Purging and Sampling

Clayton purged and sampled the 4 existing groundwater monitoring wells on March 7, 1994. As it was explained in the previous groundwater quarterly report, monitoring well MW-5 was removed during the remediation activities conducted in

late 1993 (Clayton, 1994).

Groundwater was pumped at rates not exceeding 5-gallons per minute from each monitoring well using a GrundfosTM submersible pump. Throughout the purging procedure, Ph, temperature, and conductivity were measured and recorded on field groundwater sampling forms (Appendix A). The monitoring wells were allowed to recharge to a minimum of 80% before samples were collected. Groundwater samples were collected in appropriate containers for the analyses specified.

3.2 ANALYTICAL METHODS

Groundwater samples from each of the wells were analyzed using EPA Methods 524.2 for volatile organic compounds and 180.1 for turbidity. The samples were analyzed at the laboratory facilities of Clayton Environmental Consultants, in Pleasanton, California. Clayton Environmental laboratory in Pleasanton is certified by the State of California to perform the specified analysis.

4.0 FIELD PROCEDURES

Clayton personnel conducted field activities and sampling in accordance with Clayton's field protocols.

4.1 SAMPLING PROCEDURES

Prior to groundwater sampling, monitoring wells were purged with a GrundfosTM submersible pump. Water quality parameters (Ph, temperature, and electrical conductivity) were measured and recorded periodically during the purging process. Monitoring well purging was discontinued after removing at least three well casing volumes of water, and the water quality parameters had stabilized to within 10% of the previously measured parameter. Each monitoring well was allowed to recharge to 80% of its original measured groundwater level before sampling.

Clayton collected the groundwater samples with a TeflonTM bailer. The groundwater samples were decanted from the bailer with a TeflonTM tap and collected in the appropriate containers with preservatives. The samples were collected in containers appropriate to the analyses requested (i.e., 40 ml "zero head space" glass vials with teflon-lined septa for the VOCs analysis; and 500 ml plastic bottles for the turbidity analysis). The samples were labeled, wrapped in shock-absorbing materials, and placed on Blue IceTM in an ice chest for transportation to a laboratory that was certified by the State of California, Department of Health Services (DHS) for analyses. Chain-of-custody protocols were followed throughout field and laboratory procedures.

4.2 WASTE MANAGEMENT

Water removed from the monitoring wells during purging and sampling was placed in Class 17-H, DOT-approved 55-gallon drums. Disposal of the purged water is handled by the Stoody Company. The purged water is manifested, transported by the Amberwick Corporation to the De Menno/Kerdon facility in Compton, California for recycling. A copy of a manifest for purged water disposal is attached in Appendix A.

4.3 DECONTAMINATION PROCEDURES

Clayton hand washed the sampling devices, purging equipment, water-level indicating devices, and water-quality meters prior to their use in each monitoring well. They were washed in an AlconoxTM detergent solution, rinsed twice in potable water, and final rinsed with deionized water. For the decontamination of the purging equipment (GrundfosTM pump and hose), approximately 5 to 10 gallons of potable water was first run through the system, followed by 3 to 5 gallons of deionized water. The exterior surfaces of the pump and hose were hand washed then rinsed with potable water.

4.4 WELL-SOUNDING PROCEDURES

Clayton used electronic water-level indicators to measure depth to water prior to purging each monitoring well. Depths to groundwater were measured and recorded to the nearest one-hundredth of a foot relative to the surveyors mark at the top of each well casing. To minimize the potential for cross-contamination, water-level indicators were decontaminated between soundings.

5.0 MONITORING RESULTS

5.1 GROUNDWATER POTENTIOMETRIC SURFACE MAPS

Groundwater elevations for the last quarter are summarized in Table 2. A historical summary of the groundwater elevations is presented in Table 3. Clayton compiled groundwater monitoring well data, land surveyed well locations, casing elevations, and the last measurement of groundwater elevations for specific monitoring wells. Based on those measurements a groundwater potentiometric surface map was generated for the site.

5.2 ANALYTICAL RESULTS

The laboratory analytical results for VOCs, of the groundwater samples collected during the first quarter of 1994, and the analytical data for all the compounds detected from the last six groundwater monitoring events are summarized in Table 1.

Table 5 presents a historical summary of the concentrations of 1,1 dichloroethene (1,1-DCE), tetrachloroethene (PCE), 1,1,1-Trichloroethane (1,1,1-TCA) and trichloroethene (TCE), since these have been the compounds of concern during the history of the site.

5.2.1 Monitoring Well MW-1

The laboratory reported a concentration of 7.1 Nephelometric Turbidity Units (NTUs) in the sample analyzed from Well MW-1 (Table 4).

The laboratory reported the presence of the following five VOCs: 1,1 dichloroethene (1,1-DCE) at 19 ug/L , 1,1,1-trichloroethane (1,1,1-TCA) at 1.7 ug/L, tetrachloroethene (PCE) at 67 ug/L, trichloroethene (TCE) at 35 ug/L, and Freon 113 at 1.9 ug/L.

The concentrations of 1,1-DCE, TCE and PCE were the only compounds that exceeded the established MCL for drinking water.

5.2.2 Monitoring Well MW-2

The laboratory reported a concentration of 5.5 Nephelometric Turbidity Units (NTUs) in the sample analyzed from Well MW-2 (Table 4).

The laboratory reported the presence of the following six VOCs: 1,1-DCE at 4.3 ug/L, PCE at 150 ug/L, 1,1,1-TCA at 0.7 ug/L, TCE at 9.2 ug/L, TCFM at 0.9 ug/L, and Freon 113 at 4.0 ug/L.

The concentrations of TCE and PCE exceeded the established MCL for drinking water.

5.2.3 Monitoring Well MW-3

The laboratory reported a concentration of 4.2 NTUs in the sample analyzed from Well MW-3 (Table 4).

The laboratory reported the presence of the following four VOCs: 1,1-DCE at 0.9 ug/L, sec-Butylbenzene at 0.9 ug/L, PCE at 9.3 ug/L, and TCE at 5.4 ug/L.

The concentrations of TCE and PCE exceeded the established MCL for drinking water.

5.2.4 Monitoring Well MW-4

The laboratory reported a concentration of 4.2 NTUs in the sample tested from Well MW-4 (Table 4).

The laboratory reported the presence of eight VOCs: 1,1-DCE at 14 ug/L, Cis 1,2-DCE at 3.2 ug/L, 1,2- Dichloroethane at 3.2 ug/L, PCE at 190 ug/L, 1,1,1-TCA at 1.2 ug/L, TCE at 29 ug/L, TCFM at 3.7 ug/L and Freon 113 at 8.4 ug/L.

Of the eight compounds detected, three (1,1-DCE, PCE, TCE) exceeded the MCL for drinking water.

6.0 <u>DISCUSSION AND CONCLUSIONS</u>

6.1 TURBIDITY

The turbidity test results from the laboratory indicate that two of the four groundwater samples taken were within the recommended EPA turbidity range 0 to 5 NTUs and two samples were slightly above the recommended level. Table 4 in Appendix A presents the turbidity results of the monitoring wells for the subject sampling event.

6.2 VOLATILE ORGANIC COMPOUNDS

Clayton has performed quarterly groundwater monitoring at the Stoody Company facility for the last 3 years.

The most noticeable trend noted in the laboratory analyses has been the consistent reduction of VOC concentrations during this time. During the subject sampling event the following five compounds exceeded the MCL standards:

CTC, in MW-3
1,2-DCA, in MW-3
1,1-DCE, in MW-1, MW-2, MW-3, and MW-4
PCE, in MW-1, MW-2, MW-3, and MW-4
TCE, in MW-1, MW-2, MW-3, and MW-4

The laboratory analyses of the groundwater samples collected during the last 3 years, and the results of this quarter, indicate that the contaminants observed in the downgradient monitoring wells can also be seen in the upgradient monitoring wells of the facility. These data indicate that an offsite source of contamination exists, and the groundwater is contaminated before reaching the site.

Figures 4 through 11 and Table 4 present a historical summary of the concentrations of 1,1-DCE, PCE, and TCE.

7.0 SCHEDULE FOR NEXT GROUNDWATER MONITORING EVENT

Clayton Environmental on behalf of the Stoody Company requests that the CRWQCB grant closure for the subject site and that the groundwater sampling be discontinued at the site. For this reason groundwater sampling is not scheduled in the future.

8.0 <u>LIMITATIONS</u>

The information and opinions rendered in this report are exclusively for use by the Thermadyne Company. Clayton Environmental Consultants, Inc. will not distribute this report without their consent except as may be required by law or court order. The information and opinions expressed in this report are given in response to our limited assignment and should be evaluated and implemented only in light of that assignment. We accept responsibility for the competent performance of our duties in executing the assignment and preparing this report in accordance with the normal standards of our profession but disclaim any responsibility for consequential damages.

This report submitted by:

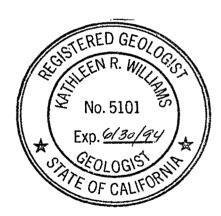
Gustavo Valdivia

Project Engineer

Environmental Management Services

Pacific Operations

This report reviewed by:

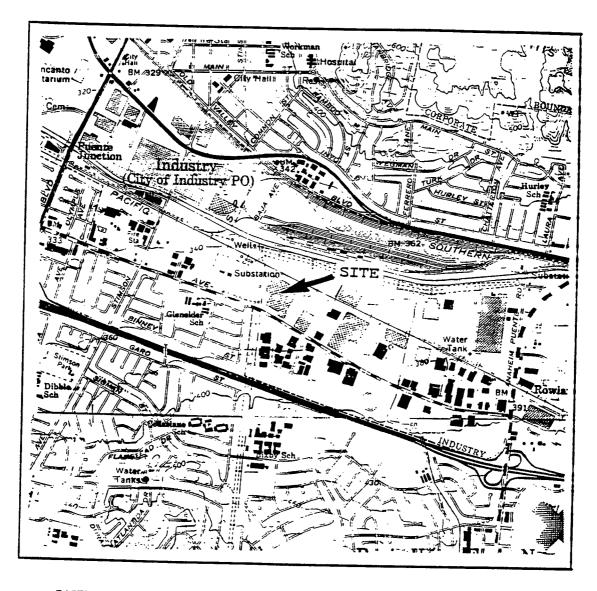

Kathleen R. Williams, R.G.# 5101

Manager

Environmental Management Services

Pacific Operations

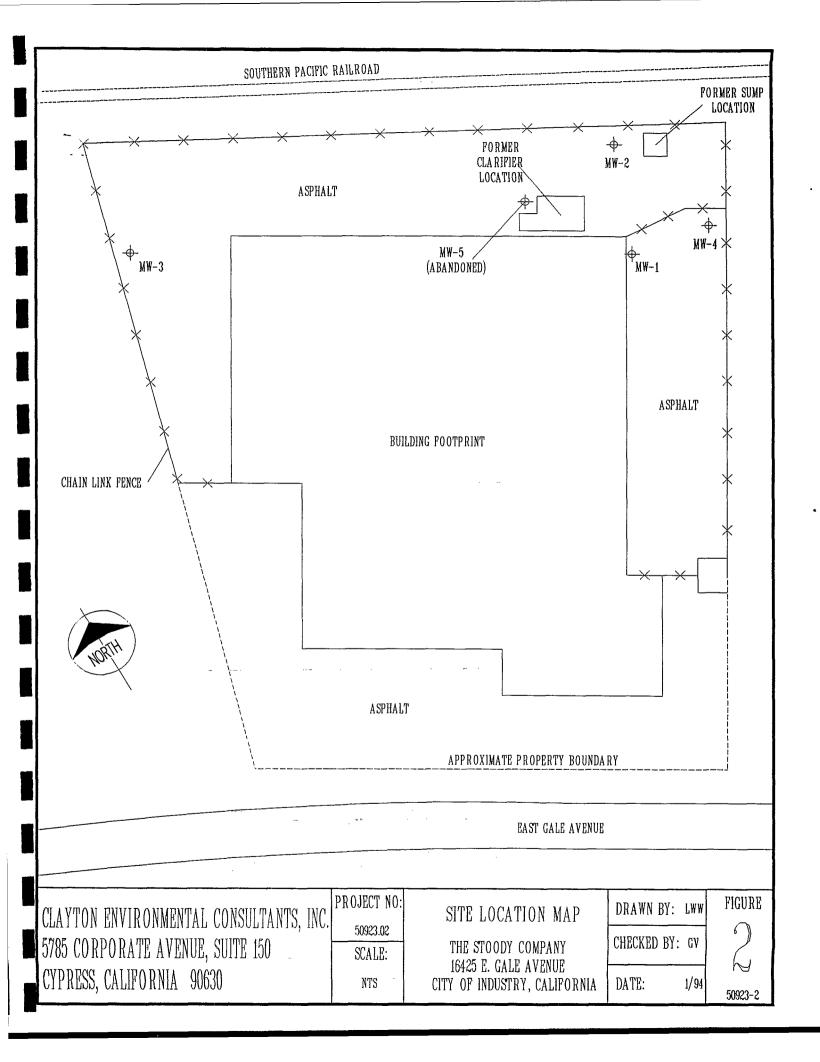
May 23, 1993

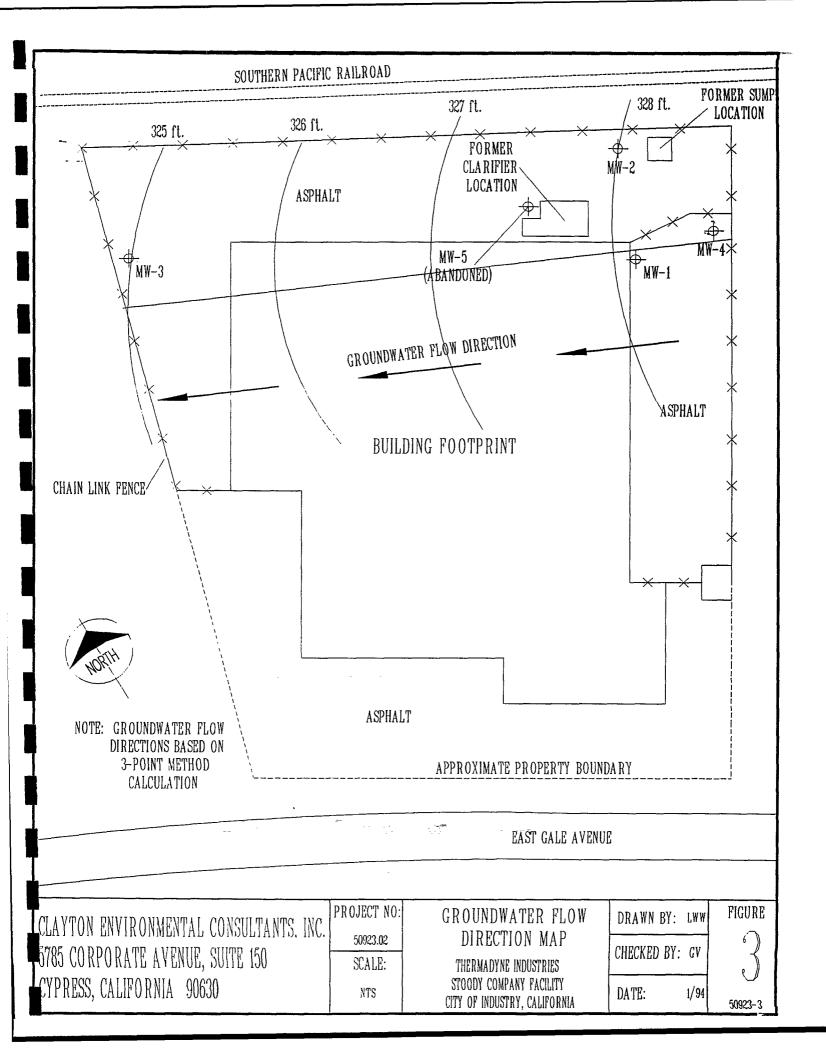

9.0

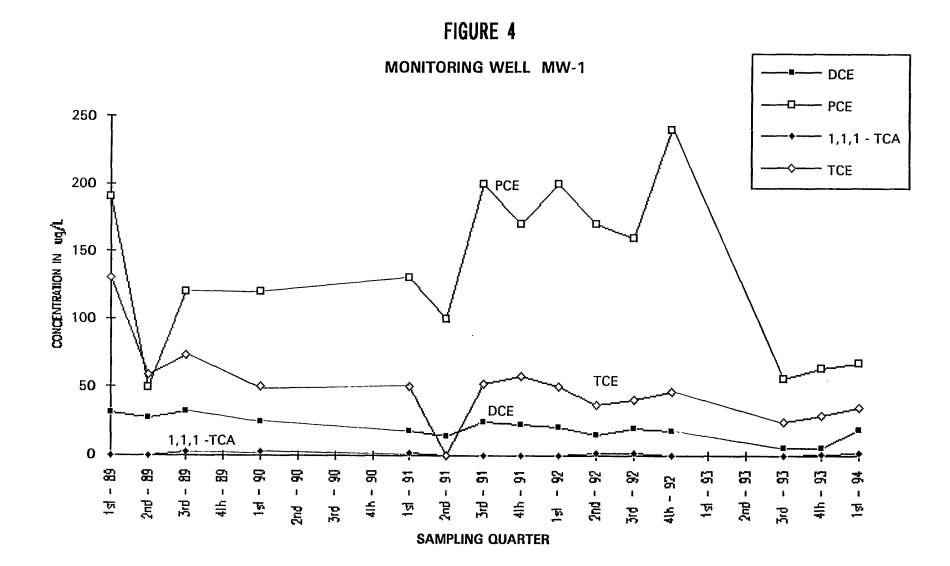
REFERENCES

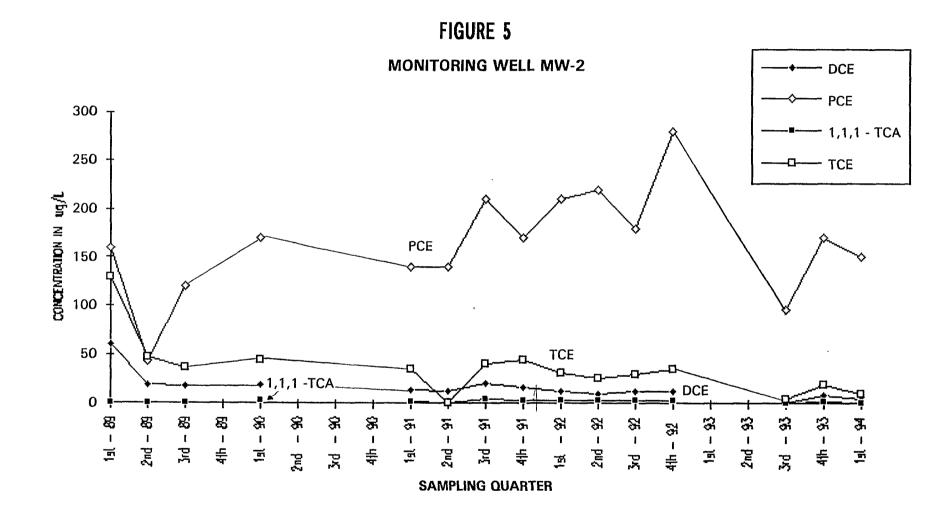
Clayton Environmental Consultants, October, 1988. Initial Subsurface Soil Investigation Report and Groundwater Monitoring Workplan for the Stoody Company at 16425 East Gale Avenue, Industry, California

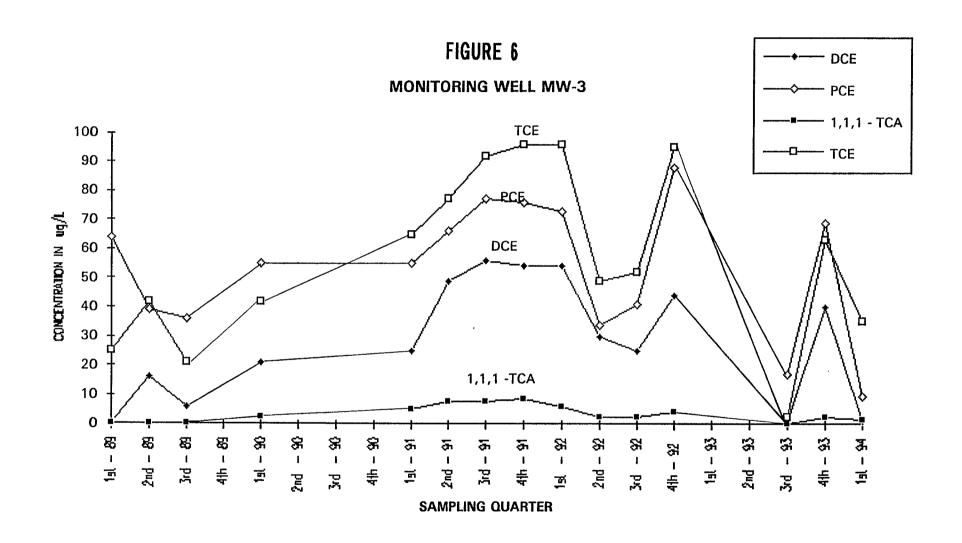
Clayton Environmental Consultants, January, 1994. Fourth Quarter, 1993, Groundwater Monitoring Results from the Stoody Company Facility, 16425 East Gale Avenue, Industry California

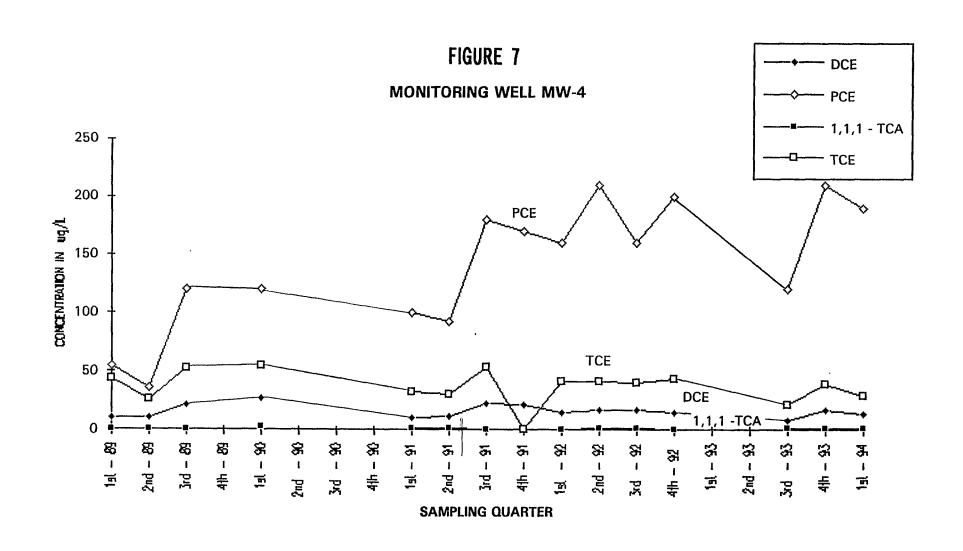

FIGURES

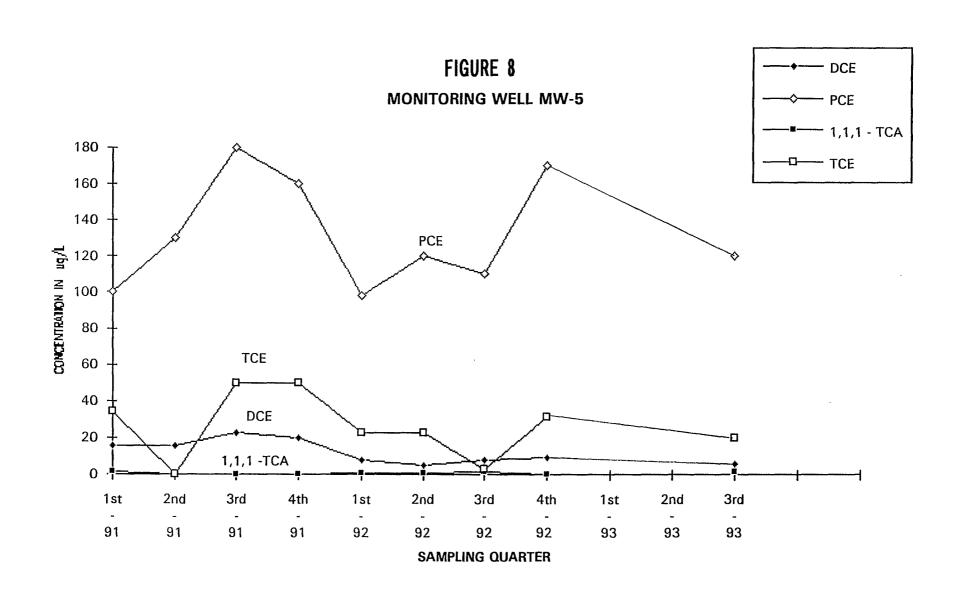


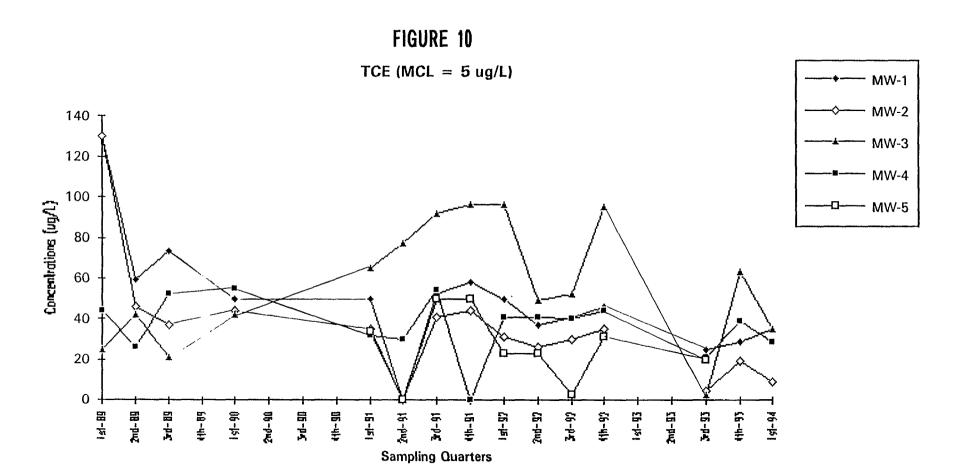

BASEMAP TAKEN FROM USGS 1966, BALDWIN PARK AND LA HABRA. CALIFORNIA QUADRANGLE, 7.5 MINUTE SERIES (TOPOGRAPHIC), PHOTOREVISED 1981.

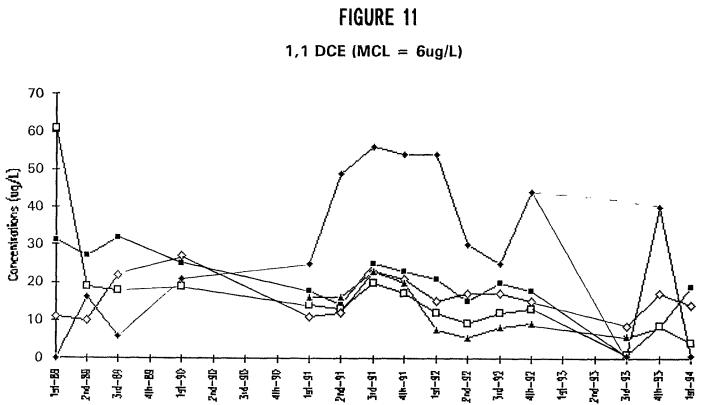



CLAYTON ENVIRONMENTAL CONSULTANTS, INC. 5785 CORPORATE AVENUE, SUITE 150	PROJECT NO: 50923.01	AND TOPOGRAPHY	DIAWN DI: LWW	
CYPRESS, CALIFORNIA 90630	SCALE: 1" = 2000'	16425 E. GALE AVENUE	CHECKED BY: GV DATE: 10/93	$1 \mid$









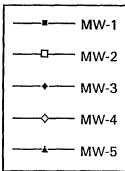

PCE (MCL = 5 ug/L) 300 250 200 150 —**♦**— MW-1 **-->**-- MW-2 **▲**-- MW-3 100 -■--MW-4 50 7 1st-89 3rd-89 1st-90 3rd-90 1st-91 3rd-91 1st-92 3rd-92 1st-93 3rd-93 1st-94

FIGURE 9

Sampling Quarters

TABLES

at
Stoody Company
City of Industry, California
Clayton Project No. 50923.03

Compound	Sampling Date	MW-1	MW-2	MW-3	MW-4	Field Blank	Method Blank	LOD for Compound	CAMCL and EPAMCL for Compound	
Benzene	7-24-92	ND	ND	ND	ND	ND	ND	0.5	CAMCL: 1.0	
<u> </u>	10-28-92	ND	ND	0.6	ND	ND	ND		EPAMCL: 5.0	
	12-11-92	ND	ND	ND	ND	ND	ND			
	9-10-93	ND	ND	ND	ND	ND	ND			
	12-20-93	ND	ND	ND	ND	ND	ND			
	3-4-94	ND	ND	. ND .	ND	ND	ND			
Carbon tetrachloride	7-24-92	0.7*	ND	0.9*	0.8*	ND	ND	0.5	CAMCL: 0.5	
(CTC)	10-28-92	0.9*	0.7*	0.9*	0.8*	ND	ND			EPAMCL: 5.0
	12-11-92	ND	ND	ND	ND	ND	ND			
	9-10-93	ND	ND	ND	ND	ND	ND		;	
	12-20-93	ND	ND	0.8*	0.5	ND	ND		į	
	3-4-94	ND	ND	ND	ND	ND.	ND			
Chloroform	7-24-92	ND	ND	0.8	0.5	ND	ND	0.5	CAMCL &	
	10-28-92	0.6	0.5	0.8	0.6	ND	ND		EPAMCL: 100	
	12-11-92	ND	ND	1.2	ND	ND	ND			
	9-10-93	ND	ND	ND	ND	ND	ND			
	12-20-93	ND	ND	0.6	ND	ND	ND			
	3-4-94	ND	ND	ND	ND	ND	ND			

at

Stoody Company
City of Industry, California
Clayton Project No. 50923.03

Compound	Sampling Date	MW-1	MW-2	MW-3	MW-4	Field Blank	Method Blank	LOD for Compound	CAMCL and EPAMCL for Compound	
2-Chlorotoluene	7-24-92	ND	ND	ND	ND	ND	ND	0.5	Unregulated	
	10-28-92	ND	ND	0.6*	ND	ND	ND			
	12-11-92	ND	ND	ND	ND	ND	ND			
	9-10-93	ND	ND	ND	ND	ND	ND			
	12-20-93	ND	ND	ND	ND	ND	ND			
	3-4-94	ND	ŊD	ND	ND	ND	ND			
1,2-Dichloroethane	7-24-92	ND	ND	0.60*	ND	ND	ND	0.5	CAMCL &	
(1,2-DCA)	10-28-92	ND	ND	0.60*	ND	ND	ND		EPAMCL: 0.5	
	12-11-92	ND	ND	0.66*	ND	ND	ND			
	9-10-93	ND	ND	ND	ND	ND	ND			
	12-20-93	ND	ND	0.6*	ND	ND	ND			
	3-4-94	ND	, ND.	ND	ND	ND	ND			
1,1-Dichloroethene	7-24-92	15*	9.3*	30*	17*	ND	ND	0.5	CAMCL: 6.0	
(1,1-DCE)	10-28-92	20*	12*	25*	17*	ND	ND		EPAMCL: 7.0	
	12-11-92	18*	13*	44*	15*	ND	ND			
	9-10-93	5.5	1.2	0.7	8.6*	ND	ND			
	12-20-93	8.1*	8.5*	40*	17*	ND	ND			
	3-4-94	19	4.3	0.9	. 14	ND	ND			

w:\gv\stoody\50923-3.T1

at

Stoody Company City of Industry, California Clayton Project No. 50923.03

Compound	Sampling Date	MW-1	MW-2	MW-3	MW-4	Field Blank	Method Blank	LOD for Compound	CAMCL and EPAMCL for Compound		
Cis 1,2-Dichloroethene	7-24-92	3.0	2.7	ND	3.9	ND	ND	0.5	CAMCL: 6.0		
(Cis 1,2-DCE)	10-28-92	3.8	3.5	0.5	4.7	ND	ND		EPAMCL: 7.0		
	12-11-92	3.9	3.4	0.83	4.1	ND	ND				
	9-10-93	ND	ND	ND	2.3	ND	ND				
	12-20-93	ND	1.0	ND	4.1	ND	ND				
	3-4-94	ND	ND	ND	3.2	ND	ND				
Ethylbenzene	7-24-92	ND	ND	ND	ND	ND	ND	0.5	CAMCL: 680		
	10-28-92	ND	ND 0.8 N	ND	ND	ND		EPAMCL: 700			
	12-11-92	ND	ND	ND	ND	ND	ND	- - -			
	9-10-93	ND	ND	ND	ND	ND	ND				
	12-20-93	ND	ND	ND	ND	ND	ND				
	3-4-94	ND	ND	ND	ND	ND	ND				
Methylene chloride	7-24-92	ND	ND	ND	. ND	ND	ND	0.5	CAMCL:		
(MC)	10-28-92	ND	ND	ND	ND	ND	ND		NONE		
	12-11-92	2.7	ND	0.63	ND	ND	ND		EPAMCL: 5.0		
	9-10-93	ND	ND	ND	ND	ND	ND				
	12-20-93	ND	ND	ND	ND	ND	ND				
	3-4-94	ND	ND	ND	ND z	ND	ND				

w:\gv\stoody\50923-3.T1

at

Stoody Company
City of Industry, California
Clayton Project No. 50923.03

Compound	Sampling Date	MW-1	MW-2	MW-3	MW-4	Field Blank	Method Blank	LOD for Compound	CAMCL and EPAMCL for Compound	
Naphthalene	7-24-92	ND	ND	ND	ND	ND	ND	0.5	Unregulated	
	10-28-92	ND	ND	1.6	ND	ND	ND			
	12-11-92	ND	ND	ND	ND	ND	ND			
	9-10-93	ND	ND	ND	ND	ND	ND			
	3-4-94	ND	ND	ND	ND	ND	ND			
Tetrachloroethene	7-24-92	170*	220*	34*	210*	ND	ND	0.5	CAMCL: 5.0	
(PCE)	10-28-92	160*	180*	41*	160*	ND	ND			EPAMCL: 5.0
	12-11-92	240*	280*	88*	200*	ND	ND			
	9-10-93	56*	96*	17*	120*	ND	ND			
	12-20-93	64*	170*	69*	210*	ND	ND		٠	
	3-4-94	67	150	9.3	190	ND	ŅD			
Toluene	7-24-92	ND	ND	ND	ND	ND	ND	0.5	CAMCL:	
	10-28-92	ND	ND	0.8	ND	ND	ND		Unregulated	
	12-11-92	ND	ND	ND	0.30	ND	ND		EPAMCL: 1,000	
	9-10-93	ND	ND	ND	ND	ND	ND			
	12-20-93	ND	ND	ND	ND	ND	ND			
	3-4-94	ND	ND	ND	ND	ND	ND			

at

Stoody Company City of Industry, California Clayton Project No. 50923.03

Compound	Sampling Date	MW-1	MW-2	MW-3	MW-4	Field Blank	Method Blank	LOD for Compound	CAMCL and EPAMCL for Compound				
1,1,1-Trichloroethane	7-24-92	1.4	2.9	2.4	1.8	ND	ND	0.5	CAMCL: 200				
(1,1,1-TCA)	10-28-92	1.7	3.2	2.4	1.8	ND	ND		EPAMCL:				
	12-11-92	ND	3.3	4.3	ND	ND	ND		200				
	9-10-93	ND	1.2	ND	1.5	ND	ND						
	12-20-93	0.5	1.5	2.5	1.8	ND	ND						
	3-4-94	1.7	0.7	ND	1.2	ND	ND						
Trichloroethene	7-24-92	37*	26*	49*	41*	ND	ND	0.5	CAMCL: 5.0				
(TCE)	10-28-92	41*	30*	52*	40*	ND	ND		EPAMCL:				
	12-11-92	46*	35*	95*	44*	ND	ND			10		5.0	5.0
	9-10-93	25*	4.7	2.5	21*	ND	ND		•				
	12-20-93	29*	19*	63*	39*	ND	ND						
	3-4-94	35	9.2	5.4	29	ND	ND						
Trichlorofluoro-methane	7-24-92	2.7	2.3	0.6	4.8	ND	ND	0.5	CAMCL: 150				
(TCFM)	10-28-92	3.0	2.2	ND	3.5	ND	ND		EPAMCL:				
	12-11-92	3.3	2.7	0.56	2.9	ND	ND		Unregulated				
	9-10-93	ND	0.6	ND	2.0	ND	ND						
	12-20-93	ND	1.2	ND	3.2	ND	ND						
	3-4-94	ND	0.9	ND	3.7	ND	ND						

w:\gv\stoody\50923-3.T1

at
Stoody Company
City of Industry, California
Clayton Project No. 50923.03

Compound	Sampling Date	MW-1	MW-2	MW-3	MW-4	Field Blank	Method Blank	LOD for Compound	CAMCL and EPAMCL for Compound
1,2,4-Trimethylbenzene	7-24-92	ND	ND	ND	ND	ND	ND	0.5	Unregulated
(1,2,4-TMB)	10-28-92	ND	ND	2.6	ND	ND	ND		
	12-11-92	ND	ND	ND	ND	ND	ND		
	9-10-93	ND	ND	ND	ND	ND	ND		
	12-20-93	ND	ND	ND	ND	ND	ND		
	3-4-94	ND	ND	ND	ND	ND	ND		
1,3,5-Trimethylbenzene	7-24-92	ND	ND	ND	ND	ND	ND	0.5	Unregulated
(1,3,5-TMB)	10-28-92	ND	ND	2.1	ND	ND	ND		
	12-11-92	ND	ND	ND	ND	ND	ND		
	9-10-93	ND	ND	ND	ND	ND	ND		
	12-20-93	ND	ND	ND	ND	ND	ND		
	3-4-94	ND	ND	ND	ND	- ND	ND		
o-Xylene	7-24-92	ND	ND	ND	ND	ND	ND	0.5	CAMCL: 1,750
	10-28-92	ND	ND	1.1	ND	ND	ND		EPAMCL:
	12-11-92	ND	ND	ND	ND	ND	ND		10,000
	9-10-93	ND	ND	ND	ND	ND	ND	1	
	12-20-93	ND	ND	ND	ND	ND	ND		
	3-4-94	ND	: ND	ND	ND	ND	ND		

at

Stoody Company City of Industry, California Clayton Project No. 50923.03

Compound	Sampling Date	MW-1	MW-2	MW-3	MW-4	Field Blank	Method Blank	LOD for Compound	CAMCL and EPAMCL for Compound
p, m-Xylenes	7-24-92	ND	ND	ND	ND	ND	ND	0.5	CAMCL: 1,750
- The state of the	10-28-92	ND	ND	3.6	ND	ND	ND		EPAMCL:
	12-11-92	ND	ND	ND	ND	ND	ND		10,000
	9-10-93	ND	ND	ND	ND	ND	ND		
	12-20-93	ND	ND	ND	ND	ND	ND		
	3-4-94	ND	ND	ND	ND	ND	ND		
Freon 113	7-24-92	ND	ND	ND	ND	ND	ND	0.5	CAMCL: 1,200
(1,1,2-Trichloro -1,2,2-Trifluoroethane)	10-28-92	14	7.7	15	13	ND	ND		EPAMCL:
	12-11-93	ND	ND	ND	ND	ND	ND		Unregulated
	9-10-93	0.7	2.9	0.9	7.6	ND	ND		:
	12-20-93	ND	7.3	25	13	ND	ND		
	3-4-94	1.9	4.0	ND	8.4	ND .	ND .		

ND:

Not detected at or above limit of detection

NT:

Not Tested

EPAMCL: Environmental Protection Agency Maximum Contaminant Level

LOD:

Limit of detection

Note: Monitoring Well MW-5 was removed during the remediation activities on October 1993

Micrograms per liter (generally equivalent to parts per billion) CAMCL:State of California DOHS, Primary Maximum Contaminant Level

*Reported concentration is above CAMCL and/or EPAMCL

Table 2 Groundwater Monitoring Well Data at

Stoody Company City of Industry, California

Clayton Project No. 50923.03

Measurement Date: March 4, 1994

	Elevations (feet)										
Monitoring Well	MW-1	MW-2	MW-3	MW-4							
California Coordinates Northerly	4 115 352.91	4 115 446.16	4 115 618.47	4 115 317.93							
California Coordinates Easterly	4 304 877.74	4 305 930.76	4 304 433.56	4 305 006.96							
Elevation at top of well casing (MSL)	352.18	351.12	349.34	353.55							
Date of Measurements	3/4/94	3/4/94	3/4/94	3/4/94							
Total depth of well from top of casing	47.70	46.40	46.02	51.23							
Depth to water from top of casing	24.50	23.36	24.92	25.23							
Elevation of water (MSL)	327.68	327.76	324.42	328.32							

MSL: Elevation above Mean Sea Level

Table 3
Summary Table of Groundwater Elevations

Stoody Company City of Industry, California Clayton Project No. 50923.03

Measurement Date	MW-1 (feet)	MW-2 (feet)	MW-3 (feet)	MW-4 (feet)
1/29/92	320.42	320.47	316.59	321.14
2/16/92	322.12	322.23	318.33	322.87
3/23/92	322.46	322.58	318.58	323.19
4/9/92	322.48	322.52	318.58	323.21
5/19/92	322.80	322.88	318.79	323.53
6/17/92	322.72	322.78	318.78	323.45
7/6/92	322.67	322.63	318.77	323.26
8/25/92	323.00	322.08	319.13	323.73
9/25/92	322.92	321.98	318.97	323.59
10/28/92	322.86	322.90	319.14	325.35
11/19/92	322.88	322.94	319.35	325.59
12/19/92	323.19	325.25	319.50	324.89
9/10/93	328.04	327.10	324.64	328.69
10/11/93	327.91	327.95	324.62	328.56
12/20/93	327.91	327.98	325.11	328.59
3/4/94	327.68	327.76	324.42	328.32

Note: Groundwater elevations are shown in feet above mean sea level

W:\STOODY\50923-Q1.TBS

Table 4 Summary Table of Results for EPA Method 180.1 for Turbidity

و11

at

Stoody Company City of Industry, California Clayton Project No. 50923.03

Sampling Date: March 4, 1994

Sample Identification	Turbidity (N.T.U.)*
MW-1-B	7.1
MW-2-B	5.5
MW-3-B	4.2
MW-4-B	4.2
Blank	<0.1

*N.T.U.:

Nephelometric Turbidity Units

Limit of detection:

0.1 N.T.U.

Table 5 Summary Table of Results for EPA Method 524.2 (Concentrations in ug/L) for Volatile Organic Compounds

at
Stoody Company
City of Industry, California
Clayton Project No. 50923.03

Monitoring Well MW-1

COMPOUND	Sampling Quarter	Sampling Date	Concentration ug/L
1,1-Dichloroethene	1st - 89	2/2/89	31
(DCE)	2nd - 89	8/2/89	27
MCL= 6 ug/L	3rd - 89	10/16/89	32
	1st - 90	4/24/90	25
	NO	SAMPLING PE	RFORMED
	1st - 91	12/27/90	18
	2nd - 91	5/14/91	14
	3rd - 91	8/14/91	25
	4th - 91	11/1/91	23
	1st - 92	3/24/92	21
	2nd - 92	7/24/92	15
	3rd - 92	10/28/92	20
	4th - 92	12/11/92	18
	NO	SAMPLING PE	RFORMED
	3rd - 93	9/10/93	5.5
	4th - 93	12/20/93	8.1
	1st - 94	3/4/94	19
Tetrachloroethene	1st - 89	2/2/89	190
(PCE)	2nd - 89	8/2/89	49
MCL = 5 ug/L	3rd - 89	10/16/89	120
	1st - 90	4/24/90	120

COMPOUND	Sampling Quarter	Sampling Date	Concentration ug/L	
Tetrachloroethene	NO	NO SAMPLING PERFORMED		
(PCE)	1st - 91	12/27/90	130	
MCL = 5 ug/L	2nd - 91	5/14/91	100	
	3rd - 91	8/14/91	200	
	4th - 91	11/1/91	170	
	1st - 92	3/24/92	200	
	2nd - 92	7/24/92	170	
	3rd - 92	10/28/92	160	
	4th - 92	12/11/92	240	
	NO	SAMPLING PE	RFORMED	
	3rd - 93	9/10/93	56	
	4th - 93	12/20/93	64	
	1st - 94	3/4/94	67	
1,1,1-Trichloethane	1st - 89	2/2/89	ND	
(1,1,1-TCA)	2nd - 89	8/2/89	ND	
MCL = 200 ug/L	3rd - 89	10/16/89	3	
	1st - 90	4/24/90	2.5	
	NO	O SAMPLING PE	RFORMED	
	1st - 91	12/27/90	1.9	
	2nd - 91	5/14/91	ND	
	3rd - 91	8/14/91	ND	
	4th - 91	11/1/91	ND	
	1st - 92	3/24/92	ND	
	2nd - 92	7/24/92	1.4	
	3rd - 92	10/28/92	1.7	

COMPOUND	Sampling Quarter	Sampling Date	Concentration ug/L
1,1,1-Trichloethane	4th - 92	12/11/92	ND
(1,1,1-TCA)	NO	O SAMPLING PE	RFORMED
MCL = 200 ug/L	3rd - 93	9/10/93	ND
	4th - 93	12/20/93	0.5
	1st - 94	3/4/94	1.7
Trichloroethene	1st - 89	2/2/89	130
(TCE)	2nd - 89	8/2/89	59
MCL = 5 ug/L	3rd - 89	10/16/89	73
	1st - 90	4/24/90	50
	NO	O SAMPLING PE	RFORMED
	lst - 91	12/27/90	50
	2nd - 91	5/14/91	ND
	3rd - 91	8/14/91	52
	4th - 91	11/1/91	58
	1st - 92	3/24/92	50
	2nd - 92	7/24/92	37
	3rd - 92	10/28/92	41
	4th - 92	12/11/92	46
	NO SAMPLING PERFORMED		RFORMED
	3rd - 93	9/10/93	25
	4th - 93	12/20/93	29
	1st - 94	3/4/94	35

Table 5 (continued) Summary Table of Results for EPA Method 524.2 (Concentrations in ug/L) for Volatile Organic Compounds

at

Stoody Company City of Industry, California Clayton Project No. 50923.03

Monitoring Well MW-2

COMPOUND	Sampling Quarter	Sampling Date	Concentration ug/L
1,1 Dichloroethene	1st - 89	2/2/89	61
(1,1-DCE)	2nd - 89	8/2/89	19
MCL = 6 ug/L	3rd - 89	10/16/89	18
	1st - 90	4/24/90	19
	1	NO SAMPLING PE	ERFORMED
	1st - 91	12/27/90	14
	2nd - 91	5/14/91	13
	3rd - 91	8/14/91	20
	4th - 91	11/1/91	17
	1st - 92	3/24/92	12
	2nd - 92	7/24/92	9.3
	3rd - 92	10/28/92	12
	4th - 92	12/11/92	13
	I	NO SAMPLING PE	ERFORMED
	3rd - 93	9/10/93	1.2
	4th - 93	12/20/93	8.5
	1st -94	3/4/94	4.3
Tetrachloroethene	1st - 89	2/2/89	160
(PCE)	2nd - 89	8/2/89	43
MCL = 5 ug/L	3rd - 89	10/16/89	120
	1st - 90	4/24/90	170

COMPOUND	Sampling Quarter	Sampling Date	Concentration ug/L	
Tetrachloroethene]	NO SAMPLING PERFORMED		
(PCE)	1st - 91	12/27/90	140	
MCL = 5 ug/L	2nd - 91	5/14/91	140	
	3rd - 91	8/14/91	210	
	4th - 91	11/1/91	170	
	1st - 92	3/24/92	210	
	2nd - 92	7/24/92	220	
	3rd - 92	10/28/92	180	
	4th - 92	12/11/92	280	
		NO SAMPLING PE	RFORMED	
	3rd - 93	9/10/93	96	
	4th - 93	12/20/93	170	
	1st -94	3/4/94	150	
1,1,1-Trichloroethane	1st - 89	2/2/89	ND	
(1,1,1-TCA)	2nd - 89	8/2/89	ND	
MCL = 200 ug/L	3rd - 89	10/16/89	ND	
	1st - 90	4/24/90	3.3	
		NO SAMPLING PE	RFORMED	
	1st - 91	12/27/90	2.5	
	2nd - 91	5/14/91	ND	
	3rd - 91	8/14/91	4.7	
	4th - 91	11/1/91	3.1	
	1st - 92	3/24/92	3.5	
	2nd - 92	7/24/92	2.9	
	3rd - 92	10/28/92	3.2	

COMPOUND	Sampling Quarter	Sampling Date	Concentration ug/L
	4th - 92	12/11/92	3.3
1,1,1-Trichloroethane		NO SAMPLING PER	RFORMED
(1,1,1-TCA)	3rd - 93	9/10/93	1.2
MCL = 200 ug/L	4th - 93	12/20/93	1.5
	1st -94	3/4/94	0.7
Trichloroethene	1st - 89	2/2/89	130
(TCE)	2nd - 89	8/2/89	46
MCL = 5.0 ug/L	3rd - 89	10/16/89	37
	1st - 90	4/24/90	44
		NO SAMPLING PE	RFORMED
	1st - 91	12/27/90	35
	2nd - 91	5/14/91	ND
	3rd - 91	8/14/91	41
	4th - 91	11/1/91	44
	1st - 92	3/24/92	31
	2nd - 92	7/24/92	26
4	3rd - 92	10/28/92	30
	4th - 92	12/11/92	35
	NO SAMPLING PERFORMED		
	3rd - 93	9/10/93	4.7
	4th - 93	12/20/93	19
	1st -94	3/4/94	9.2

Table 5 Summary Table of Results for EPA Method 524.2 (Concentrations in ug/L) for Volatile Organic Compounds

*4.30 * #164

at
Stoody Company
City of Industry, California
Clayton Project No. 50923.03

Monitoring Well MW-3

COMPOUND	Sampling Quarter	Sampling Date	Concentration
1,1-Dichloroethene	1st - 89	2/2/89	ND
(1,1-DCE)	2nd - 89	8/2/89	16
MCL = 6 ug/L	3rd - 89	10/16/89	6
	1st - 90	4/24/90	21
		NO SAMPLING P	PERFORMED
	1st - 91	12/27/90	25
	2nd - 91	5/14/91	49
	3rd - 91	8/14/91	56
	4th - 91	11/1/91	54
	1st - 92	3/24/92	54
	2nd - 92	7/24/92	30
	3rd - 92	10/28/92	25
	4th - 92	12/11/92	44
]	NO SAMPLING P	ERFORMED
	3rd - 93	9/10/93/	0.7
	4th - 93	12/20/93	40
	1st - 94	3/4/94	0.9
Tetrachloroethene	1st - 89	2/2/89	64
(PCE)	2nd - 89	8/2/89	39
MCL = 5 ug/L	3rd - 89	10/16/89	36
	1st - 90	4/24/90	55

STOODY/MW-3

COMPOUND	Sampling Quarter	Sampling Date	Concentration
Tetrachloroethene	1	NO SAMPLING PERFORMED	
(PCE)	1st - 91	12/27/90	55
MCL = 5 ug/L	2nd - 91	5/14/91	66
	3rd - 91	8/14/91	77
	4th - 91	11/1/91	76
	1st - 92	3/24/92	73
	2nd - 92	7/24/92	34
	3rd - 92	10/28/92	41
	4th - 92	12/11/92	88
	1	NO SAMPLING PI	ERFORMED
	3rd - 93	9/10/93	17
	4th - 93	12/20/93	69
	1st - 94	3/4/94	9.3
1,1,1-Trichloroethane	1st - 89	2/2/89	ND
(1,1,1-TCA)	2nd - 89	8/2/89	ND
MCL = 200 ug/L	3rd - 89	10/16/89	ND
	1st - 90	4/26/90	2.5
	NO SAMPLING PERFORMED		
	1st - 91	12/27/90	5.1
	2nd - 91	5/14/91	7.6
	3rd - 91	8/14/91	7.5
	4th - 91	11/1/91	8.7
	1st - 92	3/24/92	5.9
1,1,1-Trichloroethane	2nd - 92	7/24/92	2.4

Table 5 (continued)
Monitoring Well MW-3

COMPOUND	Sampling Quarter	Sampling Date	Concentration
(1,1,1-TCA)	3rd - 92	10/28/92	2.4
MCL = 200 ug/L	4th - 92	12/11/92	4.3
	1	NO SAMPLING P.	ERFORMED
	3rd - 93	9/10/93	ND
	4th - 93	12/20/93	2.5
	1st - 94	3/4/94	
Trichloroethene	1st - 89	2/2/89	25
(TCE)	2nd - 89	8/2/89	42
MCL = 5 ug/L	3rd - 89	10/16/89	21
	1st - 90	4/26/90	42
	1	NO SAMPLING P	ERFORMED
	1st - 91	12/27/90	65
	2nd - 91	5/14/91	77
	3rd - 91	8/14/91	92
	4th - 91	11/1/91	96
	1st - 92	3/24/92	96
	2nd - 92	7/24/92	49
	3rd - 92	10/28/92	52
	4th - 92	12/11/92	95
	1	NO SAMPLING P	ERFORMED
	3rd - 93	9/10/93	2.5
	4th - 93	12/20/93	63
	1st - 94	3/4/94	35

Table 5 (continued) Summary Table of Results for EPA Method 524.2 (Concentrations in ug/L) for Volatile Organic Compounds

at
Stoody Company
City of Industry, California
Clayton Project No. 50923.03

Monitoring Well MW-4

COMPOUND	Sampling Quarter	Sampling Date	Concentration ug/L
1,1-Dichloroethene	1st - 89	2/2/89	11
(1,1-DCE)	2nd - 89	8/2/89	10
6 ug/L	3rd - 89	10/16/89	22
	1st - 90	4/24/90	27
]	NO SAMPLING PE	ERFORMED
	lst - 91	12/27/90	11
	2nd - 91	5/14/91	12
	3rd - 91	8/14/91	23
	4th - 91	11/1/91	21
	1st - 92	3/24/92	15
	2nd - 92	7/24/92	17
	3rd - 92	10/28/92	17
	4th - 92	12/11/92	15
]	NO SAMPLING PE	ERFORMED
	3rd - 93	9/10/93	8.6
	4th - 93	12/20/93	17
	lst - 94	3/4/94	14
Tetrachloroethene	1st - 89	2/2/89	55
(PCE)	2nd - 89	8/2/89	36
MCL = 5 ug/L	3rd - 89	10/16/89	120

COMPOUND	Sampling Quarter	Sampling Date	Concentration ug/L	
Tetrachloroethene	1st - 90	4/24/90	120	
(PCE)		NO SAMPLING PERFORMED		
MCL = 5 ug/L	1st - 91	12/27/90	100	
	2nd - 91	5/14/91	92	
	3rd - 91	8/14/91	180	
	4th - 91	11/1/91	170	
	1st - 92	3/24/92	160	
	2nd - 92	7/24/92	210	
	3rd - 92	10/28/92	160	
	4th - 92	12/11/92	200	
		NO SAMPLING PE	RFORMED	
	3rd - 93	9/10/93	120	
	4th - 93	12/20/93	210	
	1st - 94	3/4/94	190	
1,1,1-Trichloroethane	1st - 89	2/2/89(3/30/89	ND	
(1,1,1-TCA)	2nd - 89	8/2/89	ND	
MCL = 200 ug/L	3rd - 89	10/16/89	ND	
	1st - 90	4/24/90	3.1	
	NO SAMPLING PERFORMED			
	1st - 91	12/27/90	1.4	
	2nd - 91	5/14/91	1.1	
	3rd - 91	8/14/91	ND	
	4th - 91	11/1/91	ND	
	1st - 92	3/24/92	ND	
	2nd - 92	7/24/92	1.8	

COMPOUND	Sampling Quarter	Sampling Date	Concentration ug/L		
1,1,1-Trichloroethane	3rd - 92	10/28/92	1.8		
(1,1,1-TCA)	4th - 92	12/11/92	ND		
MCL = 200 ug/L	NO SAMPLING PERFORMED				
	3rd - 93	9/10/93	1.5		
	4th - 93	12/20/93	1.8		
	1st - 94	3/4/94	1.2		
Trichloroethene	1st - 89	2/2/89(3/30/89)	44		
(TCE)	2nd - 89	8/2/89	26		
MCL = 5 ug/L	3rd - 89	10/16/89	52		
	Ist - 90	4/24/90	55		
	NO SAMPLING PERFORMED				
	1st - 91	12/27/90	32		
	2nd - 91	5/14/91	30		
	3rd - 91	8/14/91	54		
	4th - 91	11/1/91	ND		
	1st - 92	3/24/92	41		
	2nd - 92	7/24/92	41		
	3rd - 92	10/28/92	40		
	4th - 92	12/11/92	44		
		NO SAMPLING PE	ERFORMED		
	3rd - 93	9/10/93	21		
	4th - 93	12/20/93	39		
	1st - 94	3/4/94	29		

Table 5 (continued) Summary Table of Results for EPA Method 524.2 (Concentrations in ug/L) for Volatile Organic Compounds

at

Stoody Company City of Industry, California Clayton Project No. 50923.03

Monitoring Well MW-5

COMPOUND	Sampling Quarter	Sampling Date	Concentrartion ug/L
1,1-Dichloroethene	1st - 91	2/13/91	16
(1,1-DCE)	2nd - 91	5/14/91	16
MCL = 6 ug/L	3rd - 91	8/14/91	23
	4th - 91	11/1/91	20
	1st - 92	3/24/92	7.7
	2nd -92	7/24/92	5.4
	3rd - 92	10/28/92	8.2
	4th - 92	12/11/92	9.4
	l	NO SAMPLING PE	RFORMED
	3rd - 93	9/10/93	5.9
	4th - 93	10/26/93	Well abandoned
Tetrachloroethene	1st - 91	2/13/91	100
(PCE)	2nd - 91	5/14/91	130
MCL = 5 ug/L	3rd - 91	8/14/91	180
	4th - 91	11/1/91	160
	1st - 92	3/24/92	98
	2nd -92	7/24/92	120
	3rd - 92	10/28/92	110
	4th - 92	12/11/92	170
	1	NO SAMPLING PE	RFORMED

COMPOUND	Sampling Quarter	Sampling Date	Concentrartion ug/L		
Tetrachloroethene	3rd - 93	9/10/93	120		
(PCE)	4th - 93	10/26/93	Well abandoned		
1,1,1-Trichloroethane	1st - 91	2/13/91	1.8		
(1,1,1-TCA)	2nd - 91	5/14/91	ND		
MCL = 200 ug/L	3rd - 91	8/14/91	ND		
	4th - 91	11/1/91	ND		
	1st - 92	3/24/92	1.1		
	2nd -92	7/24/92	1.0		
	3rd - 92	10/28/92	1.2		
	4th - 92	12/11/92	ND		
]	NO SAMPLING PE	RFORMED		
	3rd - 93	9/10/93	1.4		
	4th - 93	10/26/93	Well abandoned		
Trichloroethene	1st - 91	2/13/91	34		
(TCE)	2nd - 91	5/14/91	ND		
MCL = 5 ug/L	3rd - 91	8/14/91	50		
	4th - 91	11/1/91	50		
	1st - 92	3/24/92	23		
	2nd -92	7/24/92	23		
	3rd - 92	10/28/92	2.8		
	4th - 92	12/11/92	31		
	NO SAMPLING PERFORMED				
	3rd - 93	9/10/93	20		
	4th - 93	10/26/93	Well abandoned		

Table 5 (continued) Summary Table of Results for EPA Method 524.2 (Concentrations in ug/L) for Volatile Organic Compounds

at
Stoody Company
City of Industry, California
Clayton Project No. 50923.03

Monitoring Well MW-5

COMPOUND	Sampling Quarter	Sampling Date	Concentrartion ug/L		
1,1-Dichloroethene	1st - 91	2/13/91	16		
(1,1-DCE)	2nd - 91	5/14/91	16		
MCL = 6 ug/L	3rd - 91	8/14/91	23		
	4th - 91	11/1/91	20		
	1st - 92	3/24/92	7.7		
	2nd -92	7/24/92	5.4		
	3rd - 92	10/28/92	8.2		
	4th - 92	12/11/92	9.4		
	NO SAMPLING PERFORMED				
	3rd - 93	9/10/93	5.9		
	4th - 93	10/26/93	Well abandoned		
Tetrachloroethene	1st - 91	2/13/91	100		
(PCE)	2nd - 91	5/14/91	130		
MCL = 5 ug/L	3rd - 91	8/14/91	180		
	4th - 91	11/1/91	160		
	1st - 92	3/24/92	98		
	2nd -92	7/24/92	120		
	3rd - 92	10/28/92	110		
	4th - 92	12/11/92	170		

COMPOUND	Sampling Quarter	Sampling Date	Concentrartion ug/L		
Tetrachloroethene	NO SAMPLING PERFORMED				
(PCE)	3rd - 93	9/10/93	120		
	4th - 93	10/26/93	Well abandoned		
1,1,1-Trichloroethane	1st - 91	2/13/91	1.8		
(1,1,1-TCA)	2nd - 91	5/14/91	ND		
MCL = 200 ug/L	3rd - 91	8/14/91	ND		
	4th - 91	11/1/91	ND		
	1st - 92	3/24/92	1.1		
	2nd -92	7/24/92	1.0		
	3rd - 92	10/28/92	1.2		
	4th - 92	12/11/92	ND		
		NO SAMPLING PE	RFORMED		
	3rd - 93	9/10/93	1.4		
	4th - 93	10/26/93	Well abandoned		
Trichloroethene	1st - 91	2/13/91	34		
(TCE)	2nd - 91	5/14/91	ND		
MCL = 5 ug/L	3rd - 91	8/14/91	50		
	4th - 91	11/1/91	50		
	1st - 92	3/24/92	23		
	2nd -92	7/24/92	23		
	3rd - 92	10/28/92	2.8		
	4th - 92	12/11/92	31		
		NO SAMPLING PE	RFORMED		
	3rd - 93	9/10/93	20		

COMPOUND	Sampling Quarter	Sampling Date	Concentrartion ug/L
	4th - 93	10/26/93	Well abandoned

APPENDIX A GROUNDWATER SAMPLING FORMS

CLAYTON ENVIRONMENTAL CONSULTANTS, INC. WATER SAMPLING FIELD SURVEY FORM

Job No: 50923.03

Site: Stoody Company, Industry

Date: 3/4/94

Well No: MW-4

Sampling Team: Williamson

Sampling Method: Grunfos purge pump and bailer

Field Conditions: Overcast/cool

Describe Equipment Decontamination Before Sampling This Well:

Three-stage Alconox detergent wash, potable water rinse, double rinsed in deionized water

Total Depth

of Well:

51.23 feet

Time:

Depth to Water 9:12

Before Purging:

25.23 feet

Height of Water Column:

Diameter 2-inch

Diameter 4-inch

Volume

Purge Factor

Volume To Purge

26.0 feet

.16

.65

17 gal

3

51 gal

Depth Purging From: 35 feet

Time Purging Begins: 9:26

PURGING PARAMETERS

Time	Volume Purged (gallons)	pН	Conductivity (x10³)	T (°F)	Comments
9:28	4	6.36	1.34	70.0	Clear, no odor
9:40	20	6.52	1.21	71.0	
9:45	35	6.10	1.26	71.3	
9:56	51	6.54	1.38	72.2	

SAMPLING PARAMETERS

Time	Volume Sampled (gallons)	рН	Conductivity (x10³)	T' (°F)	Comments
10:26	1 bailer	6.26	1.35	68.8	Clear, no odor

Comments:

CLAYTON ENVIRONMENTAL CONSULTANTS, INC. WATER SAMPLING FIELD SURVEY FORM

Job No: 50923.03

Site: Stoody Company

Date: 3/4/94

Well No: MW-1

Sampling Team: Williamson

Sampling Method: Grunfos purge pump and bailer

Field Conditions: Sunny, 72 °F

Describe Equipment Decontamination Before Sampling This Well:

Three-stage Alconox detergent wash, potable water rinse, double rinsed in deionized water

Total Depth

of Well: 47.70 feet

Time:

10:39

Depth to Water

Before Purging:

24.50 feet

Height of Water Column:

Diameter 2-inch

Diameter 4-inch

Volume

Purge **Factor**

Volume To Purge

23.20 feet

.16

.65

15.08 gal

3

45 gal

Depth Purging From: 35 feet

Time Purging Begins: 10:54

PURGING PARAMETERS

Time	Volume Purged (gallons)	рН	Conductivity (x10 ³)	T (°F)	Comments
11:02	10	6.25	1.77	71.2	Clear, no odor
11:09	20	6.29	1.63	72.0	
11:15	35	6.08	1.52	71.8	
11:22	45	5.98	1.48	71.2	

SAMPLING PARAMETERS

Time	Volume Sampled (gallons)	рН	Conductivity (x10³)	T (°F)	Comments
11:33	1 bailer	6.12	1.71	70.4	Clear, no odor

Comments: Water inside well-box

CLAYTON ENVIRONMENTAL CONSULTANTS, INC. WATER SAMPLING FIELD SURVEY FORM

Job No: 50923.03

Site: Stoody Company

Date: 3/4/94

Well No: MW-2

Sampling Team: Williamson

Sampling Method: Grunfos purge pump and bailer

Field Conditions: Sunny and warm

Describe Equipment Decontamination Before Sampling This Well:

Three-stage Alconox detergent wash, potable water rinse, double rinsed in deionized water

Total Depth

of Well: 46.4 feet Time:

Depth to Water 12:42

Before Purging:

23.36 feet

Height of Water Column:

Diameter 2-inch

Diameter 4-inch

Volume

Purge Factor

Volume To Purge

23.04 feet

.16

.65

15.0 gal

3

45 gal

Depth Purging From: 37 feet

Time Purging Begins: 12:55

PURGING PARAMETERS

Time	Volume Purged (gallons)	рН	Conductivity (x10³)	T (°F)	Comments
13:00	10	6.53	1.36	71.7	Clear, no odor
13:06	20	6.44	1.28	71.2	
13:11	30	6.34	1.33	70.6	
13:18	45	6.44	1.30	70.2	

SAMPLING PARAMETERS

Time	Volume Sampled (gallons)	рН	Conductivity (x10 ³)	T (°F)	Comments
13:30	1 bailer	6.55	1.28	70.4	Clear, no odor

Comments:

CLAYTON ENVIRONMENTAL CONSULTANTS, INC. WATER SAMPLING FIELD SURVEY FORM

Job No: 50923.03

Site: Stoody Company

Date: 3/4/94

Well No: MW-3

Sampling Team: Williamson

Sampling Method: Grunfos purge pump and bailer

Field Conditions: Sunny, warm

Describe Equipment Decontamination Before Sampling This Well:

Three-stage Alconox detergent wash, potable water rinse, double rinsed in deionized water

Total Depth

of Well: 46.02 feet

Time: 14:00

Depth to Water

Before Purging:

24.92 feet

÷

Height of Water Column:

Diameter <u>2-inch</u>

Diameter 4-inch

<u>Volume</u>

Volume <u>To Purge</u>

21.10 feet

.16

.65

13.7 gal

Purge

Factor

3

= 42 gal

Depth Purging From: 37 feet

Time Purging Begins: 14:05

PURGING PARAMETERS

Time	Volume Purged (gallons)	рН	Conductivity (x10 ³)	T (°F)	Comments
14:10	10	6.24	1.54	71.3	Clear, no odor
14:16	20	6.30	1.53	71.6	
14:21	30	5.90	1.48	71.2	
14:26	42	6.09	1.46	71.6	

SAMPLING PARAMETERS

Time	Volume Sampled (gallons)	рН	Conductivity (x10³)	T (°F)	Comments
14:37	1 bailer	6.18	1.65	70.3	Clear, no odor

Comments:

APPENDIX B

LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS 1252 Quarry Lane P.O. Box 9019 Pleasanton, CA 94566 (510) 426-2600 Fax (510) 426-0106

March 15, 1994

Mr. Gustavo Valdivia CLAYTON ENVIRONMENTAL CONSULTANTS, INC. 5785 Corporate Ave., Ste. 150 Cypress, CA 90630

> Client Ref.: 50923.03 Clayton Project No.: 94030.83

Dear Mr. Valdivia:

Attached is our analytical laboratory report for the samples received on March 5, 1994. A copy of the Chain-of-Custody form acknowledging receipt of these samples is attached.

Please note that any unused portion of the samples will be disposed of after April 14, 1994, unless you have requested otherwise.

We appreciate the opportunity to be of assistance to you. If you have any questions, please contact Suzanne Silvera, Client Services Supervisor, at (510) 426-2657.

Sincerely,

Harriotte A. Hurley, CIH

Director, Laboratory Services

Michael Lynch for

Western Operations

HAH/tjb

Attachments

Clayton ENVIRONMENTAL CONSULTANTS

Page 17 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc. Client Reference: 50923.03 Clayton Project No. 94030.83

Identification: See Below mber: 9403083

Date Received: 03/05/94 Date Analyzed: 03/08/94

mber: <u>-</u>Matrix/Media:

WATER

Reference: EPA 180.1

Sample::Identification	Date Sampled	Turbidity (N.T.U.)	Method Detection Limit (N.T.U.)
W1-B	03/04/94	7.1	0.1
Mw2-A	03/04/94	5.5	0.1
<u>₩</u> W3-B	03/04/94	4.2	0.1
W4-B	03/04/94	4.2	0.1
METHOD BLANK		<0.1	0.1

ot detected at or above limit of detection formation not available or not applicable

Page 2 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc. Client Reference: 50923.03 Clayton Project No. 94030.83

ple Identification: MW1-A

ib Number: 9403083-01A

ple Matrix/Media: hod Reference:

WATER

EPA 524.2

Date Sampled:

03/04/94 Date Received: 03/05/94

Date Analyzed:

03/14/94

Analyst: ASC

alyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
ary ce	CAS #	(ug/u)	(49/11)
latile Organic Compounds			
	67. 64. 1	150	۴-
cetone	67-64-1	ND	5 0.5
Benzene	71-43-2	ND	0.5
Bromobenzene	108-86-1	ND	
romochloromethane	74-97-5	ND	0.5 0.5
romodichloromethane	75-27-4	ND	0.5
Bromoform	75-25-2	ND	0.5
romomethane	74-83-9	ND	5
-Butanone	78-93-3	ND	0.5
n-Butylbenzene	104-51-8 56-23-5	ND	0.5
Carbon tetrachloride		ND	0.5
nlorobenzene chloroethane	108-90-7 75-00-3	ND	0.5
- · - ·		ND ND	0.5
2-Chloroethylvinyl ether	110-75-8		0.5
nloroform nloromethane	67-66-3	ND	0.5
	74-87-3	ND	0.5
2-Chlorotoluene	95-49-8	ND	0.5
-Chlorotoluene	106-43-4	ND	0.5
bromochloromethane	124-48-1	ND	0.5
1,2-Dibromo-3-chloropropane	96-12-8	ND	0.5
1 2-Dibromoethane	106-93-4	ND	0.5
bromomethane	74-95-3	ND	
7,2-Dichlorobenzene	95-50-1	ND	0.5
1,3-Dichlorobenzene	541-73-1	ND	0.5
4-Dichlorobenzene	106-46-7	ND	0.5
Echlorodifluoromethane	75-71-8	ND	0.5
1,1-Dichloroethane	75-34-3	ND	0.5
2-Dichloroethane	107-06-2	ND	0.5
1-Dichloroethene	75-35-4	19	0.5
cis-1,2-Dichloroethene	156-59-2	ND	0.5
rans-1,2-Dichloroethene	156-60-5	ND	0.5
2-Dichloroethene (total)	540-59-0	ND	0.5

Page 3 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc. Client Reference: 50923.03 Clayton Project No. 94030.83

ple Identification: MW1-A b Number:

ple Matrix/Media:

9403083-01A

WATER

nod Reference: EPA 524.2

Date Sampled:

03/04/94

Date Received: Date Analyzed:

03/05/94

03/14/94

Analyst: ASC

alyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
latile Organia Germania (Germ			
latile Organic Compounds (Con-	<u>cinuea)</u>		
2-Dichloropropane	78-87-5	ND	0.5
1,3-Dichloropropane	142-28-9	ND	0.5
2,2-Dichloropropane	594-20-7	ND	0.5
1 1-Dichloropropene	563-58-6	ND	0.5
s-1,3-Dichloropropene	10061-01-5	ND	0.5
trans-1,3-Dichloropropene	10061-02-6	ND	0.5
hylbenzene	100-41-4	ND	0.5
exachlorobutadiene	87-68-3	ND	0.5
2 -Hexanone	591-78-6	ND	5
Lsopropylbenzene	98-82-8	ND	0.5
Isopropyltoluene	99-87-6	ND	0.5
Methylene chloride	75-09-2	ND	0.5
2-Methyl-2-pentanone	108-10-1	ND	5
Puphthalene	91-20-3	ND	0.5
r Propylbenzene	103-65-1	ND	0.5
sec-Butylbenzene	135-98-8	ND	0.5
Styrene	100-42-5	ND	0.5
tert-Butylbenzene	98-06-6	ND	0.5
1,1,1,2-Tetrachloroethane	630-20-6	ND	0.5
1 1,2,2-Tetrachloroethane	79-34-5	ND	0.5
I trachloroethene	127-18-4	67	0.5
I-luene .	108-88-3	ND	0.5
1 <u>,</u> 2,3-Trichlorobenzene	87-61-6	ND	0.5
1 2,4-Trichlorobenzene	120-82-1	ND	0.5
1 1,1-Trichloroethane	71-55-6	1.7	0.5
1,1,2-Trichloroethane	79-00-5	ND	0.5
Imichloroethene	79-01-6	35	0.5
Ichlorofluoromethane	75-69-4	ND	0.5
1,2,3-Trichloropropane	96-18-4	ND	0.5
1,2-Trichloro-1,2,2-trifluor			
	76-13-1	1.9	0.5

Page 4 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc. Client Reference: 50923.03 Clayton Project No. 94030.83

ple Identification: MW1-A

ab Number:

9403083-01A

ple Matrix/Media:

hod Reference: EPA 524.2

WATER

Date Sampled:

Date Received: Date Analyzed:

03/04/94 03/05/94 03/14/94

SC

Analy	st	:	I	7

alyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
latile Organic Compounds (Conti	nued)		
,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride -Xylene ,m-Xylenes	95-63-6 108-67-8 75-01-4 95-47-6	ND ND ND ND ND	0.5 0.5 0.5 0.5
rogates		Recovery (%)	OC Limits (%)
4-Bromofluorobenzene 1,4-Dichlororbenzene-d4	460-00-4 3855-82-1	96 101	80 - 120 80 - 120

Not detected at or above limit of detection Information not available or not applicable

Page 5 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc. Client Reference: 50923.03

Clayton Project No. 94030.83

nple Identification: MW2-A ab Number:

9403083-03A

WATER

thod Reference:

mple Matrix/Media:

EPA 524.2

Date Sampled: Date Received:

03/04/94 03/05/94

Date Analyzed:

03/14/94

Analyst:

ASC

alyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
latile Organic Compounds			
cetone	67-64-1	ND	5
Benzene	71-43-2	ND	0.5
Bromobenzene	108-86-1	ND	0.5
romochloromethane	74-97-5	ND	0.5
romodichloromethane	75-27-4	ND	0.5
Bromoform	75-25-2	ND	0.5
romomethane	74-83-9	ND	0.5
-Butanone	78-93-3	ND	5
n-Butylbenzene	104-51-8	ND	0.5
Carbon tetrachloride	56-23-5	ND	0.5
hlorobenzene	108-90-7	ND	0.5
ehloroethane	75-00-3	ND	0.5
2-Chloroethylvinyl ether	110-75-8	ND	0.5
hloroform	67-66-3	ND	0.5
hloromethane	74-87-3	ND	0.5
2-Chlorotoluene	95-49-8	ND	0.5
-Chlorotoluene	106-43-4	ND	0.5
ibromochloromethane	124-48-1	ND	0.5
I,2-Dibromo-3-chloropropane	96-12-8	ND	0.5
1,2-Dibromoethane	106-93-4	ND	0.5
ibromomethane	74-95-3	ND	0.5
1,2-Dichlorobenzene	95-50-1	ND	0.5
<u>1</u> ,3-Dichlorobenzene	541-73-1	ND	0.5
,4-Dichlorobenzene	106-46-7	ND	0.5
ichlorodifluoromethane	75-71-8	ND	0.5
1,1-Dichloroethane	75-34-3	ND	0.5
1,2-Dichloroethane	107-06-2	ND	0.5
,1-Dichloroethene	75-35-4	4.3	0.5
cis-1,2-Dichloroethene	156-59-2	ND	0.5
trans-1,2-Dichloroethene	156-60-5	ND	0.5
,2-Dichloroethene (total)	540-59-0	ND	0.5

Page 6 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc. Client Reference: 50923.03 Clayton Project No. 94030.83

ab Number: MW2-A 9403083-03A

ple Matrix/Media: WATER

hod Reference: E

WATER

EPA 524.2

Date Sampled: 03/04/94
Date Received: 03/05/94

Date Analyzed: 03/14/94 Analyst: ASC

		Concentration	Method Detection Limit
alyte =	CAS #	(ug/L)	(ug/L)
<u>latile Organic Compounds (Cont</u>	<u>cinued)</u>		
,2-Dichloropropane	78-87-5	ND	0.5
T,3-Dichloropropane	142-28-9	ND	0.5
2,2-Dichloropropane	594-20-7	ND	0.5
,1-Dichloropropene	563-58-6	ND	0.5
is-1,3-Dichloropropene	10061-01-5	ND	0.5
trans-1,3-Dichloropropene	10061-02-6	ND	0.5
thylbenzene	100-41-4	ND	0.5
exachlorobutadiene	87-68-3	ND	0.5
2-Hexanone	591-78-6	ND	5
Tsopropylbenzene	98-82-8	ND	0.5
-Isopropyltoluene	99-87-6	ND	0.5
methylene chloride	75-09-2	ND	0.5
2-Methyl-2-pentanone	108-10-1	ND	5
aphthalene	91-20-3	ND	0.5
-Propylbenzene	103-65-1	ND	0.5
sec-Butylbenzene	135-98-8	ND	0.5
tyrene	100-42-5	ND	0.5
ert-Butylbenzene	98-06-6	ND	0.5
I,1,1,2-Tetrachloroethane	630-20-6	ND	0.5
1,1,2,2-Tetrachloroethane	79-34-5	ND	0.5
etrachloroethene	127-18-4	150	0.5
- oluene	108-88-3	ND	0.5
1,2,3-Trichlorobenzene	87-61-6	ND	0.5
2,4-Trichlorobenzene	120-82-1	ND	0.5
1,1-Trichloroethane	71-55-6	0.7	0.5
1,1,2-Trichloroethane	79-00-5	ND	0.5
richloroethene	79-01-6	9.2	0.5
cichlorofluoromethane	75-69-4	0.9	0.5
1,2,3-Trichloropropane	96-18-4	ND	0.5
\perp 1,2-Trichloro-1,2,2-trifluor	coethane		
	76-13-1	4.0	0.5

Page 7 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc.

Client Reference: 50923.03 Clayton Project No. 94030.83

ple Identification: MW2-A

03/04/94

ab Number:

9403083-03A

Date Received: 03/05/94

mple Matrix/Media:

WATER

Date Analyzed: 03/14/94

Date Sampled:

hod Reference: EPA 524.2

Analyst:

ASC

alyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
latile Organic Compounds (Cont	inued)		
,2,4-Trimethylbenzene	95-63-6	ND	0.5
1,3,5-Trimethylbenzene	108-67-8	ND	0.5
Vinyl chloride	75-01-4	ND	0.5
-Xylene	95-47-6	ND	0.5 0.5
,m-Xylenes	~-	ND	
<u>rogates</u>		Recovery (%)	OC Limits (%)
4-Bromofluorobenzene	460-00-4	93	80 - 120
1,4-Dichlororbenzene-d4	3855-82-1	92	80 - 120

Not detected at or above limit of detection Information not available or not applicable

of 17 Page 8

Analytical Results

for

Clayton Environmental Consultants, Inc. Client Reference: 50923.03 Clayton Project No. 94030.83

ple Identification: MW3-A

9403083-05A

₩ple Matrix/Media:

Chlorotoluene

1 2-Dibromoethane

bromomethane

bromochloromethane

2-Dichlorobenzene

1,3-Dichlorobenzene

1,1-Dichloroethane

2-Dichloroethane

1-Dichloroethene

cis-1,2-Dichloroethene

rans-1,2-Dichloroethene

2-Dichloroethene (total)

4-Dichlorobenzene

chlorodifluoromethane

T, 2-Dibromo-3-chloropropane

ab Number:

WATER

Date Sampled: Date Received: 03/04/94

Date Analyzed:

ND

0.9

03/05/94 03/14/94

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

hod Reference: EPA	524.2	Analyst:	ASC
nalyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
alatile Organic Compounds			
cetone	67-64-1	ND	5
Benzene	71-43-2	ND	0.5
Bromobenzene	108-86-1	ND	0.5
romochloromethane	74-97-5	ND	0.5
romodichloromethane	75-27-4	ND	0.5
Bromoform	75-25-2	ND	0.5
romomethane	74-83-9	ND	0.5
-Butanone	78-93-3	ND	5
n-Butylbenzene	104-51-8	ND	0.5
Carbon tetrachloride	56-23-5	ND	0.5
nlorobenzene	108-90-7	ND	0.5
Enloroethane	75-00-3	ND	0.5
2-Chloroethylvinyl ether	110-75-8	ND	0.5
hloroform	67-66-3	ND	0.5
nloromethane	74-87-3	ND	0.5
2-Chlorotoluene	95-49-8	ND	0.5

106-43-4

124-48-1

106-93-4

74-95-3

95-50-1

541-73-1

106-46-7

75-71-8

75-34-3

107-06-2

75-35-4

156-59-2

156-60-5

540-59-0

96-12-8

Page 9 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc. Client Reference: 50923.03 Clayton Project No. 94030.83

ple Identification: MW3-A ab Number:

ample Matrix/Media:

9403083-05A WATER

hod Reference: EPA 524.2

Date Sampled: 03/04/94

Date Received: 03/05/94 Date Analyzed: 03/14/94

Analyst:	ASC
----------	-----

		Concentration	Method Detection Limit
alyte	CAS #	(ug/L)	(ug/L)
<u>latile Organic Compounds (Cont</u>	inued)		
,2-Dichloropropane	78-87-5	ND	0.5
,3-Dichloropropane	142-28-9	ND	0.5
2,2-Dichloropropane	594-20-7	ND	0.5
,1-Dichloropropene	563-58-6	ND	0.5
is-1,3-Dichloropropene	10061-01-5	ND	0.5
trans-1,3-Dichloropropene	10061-02-6	ND	0.5
thylbenzene	100-41-4	ND	0.5
exachlorobutadiene	87-68-3	ND	0.5
Z-Hexanone	591-78-6	ND	5
<u>I</u> sopropylbenzene	98-82-8	ND	0.5
-Isopropyltoluene	99-87-6	ND	0.5
ethylene chloride	75-09-2	ND	0.5
2-Methyl-2-pentanone	108-10-1	ND	5
aphthalene	91-20-3	ND	0.5
-Propylbenzene	103-65-1	ND	0.5
sec-Butylbenzene	135-98-8	0.9	0.5
tyrene	100-42-5	ND	0.5
ert-Butylbenzene	98-06-6	ND	0.5
T,1,1,2-Tetrachloroethane	630-20-6	ND	0.5
1,1,2,2-Tetrachloroethane	79-34-5	ND	0.5
etrachloroethene	127-18-4	9.3	0.5
loluene	108-88-3	ND	0.5
1,2,3-Trichlorobenzene	87-61-6	ND	0.5
,2,4-Trichlorobenzene	120-82-1	ND	0.5
,1,1-Trichloroethane	71-55-6	ND	0.5
1,1,2-Trichloroethane	79-00-5	ND	0.5
richloroethene	79-01-6	5.4	0.5
richlorofluoromethane	75-69-4	ND	0.5
T,2,3-Trichloropropane	96-18-4	ND	0.5
1,1,2-Trichloro-1,2,2-trifluor	coethane		
	76-13-1	ND	0.5

Page 10 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc.

Client Reference: 50923.03 Clayton Project No. 94030.83

ple Identification: MW3-A

ab Number:

9403083-05A

mple Matrix/Media: hod Reference:

WATER EPA 524.2 Date Sampled:

03/04/94 03/05/94

Date Received: Date Analyzed: 03/14/94

Analyst:

ASC

nalyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
platile Organic Compounds (Contin	ued)		
,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	95-63-6 108-67-8	ND ND	0.5 0.5

mrogates		Recovery (%)	OC Limits (왕)
📮,m-Xylenes		ND	0.5
-Xylene	95-47-6	ND	0.5
Vinyl chloride	75-01-4	ND	0.5
1,3,5-Trimethylbenzene	108-67-8	ND	0.5
,2,4-Trimethylbenzene	95-63-6	ND	0.5

<u> 10qaces</u>		KECOASTA (4)	OC HIMIECS (-6)
4-Bromofluorobenzene	460-00-4	89	80 - 120
1,4-Dichlororbenzene-d4	3855-82-1	91	80 - 120

Not detected at or above limit of detection Information not available or not applicable

Page 11 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc. Client Reference: 50923.03

Clayton Project No. 94030.83

ple Identification: MW4-A

ab Number:

9403083-07A

ple Matrix/Media:

hod Reference: EPA 524.2

WATER

Date Sampled:

Date Received: Date Analyzed:

03/04/94 03/05/94 03/14/94

Analyst:

ASC

alyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
		(-9/ -/	(-3, -,
latile Organic Compounds			
	67 64 1	ND	5
cetone	67-64-1	ND ND	0.5
Benzene	71-43-2 108-86-1	ND ND	0.5
Bromobenzene	74-97-5	ND ND	0.5
romochloromethane	74-97-5 75-27-4	ND ND	0.5
romodichloromethane Bromoform	75-27-4 75-25-2	ND ND	0.5
Promomethane	74-83-9	ND	0.5
-Butanone	74-63-9 78-93-3	ND	5
n-Butylbenzene	104-51-8	ND	0.5
Carbon tetrachloride	56-23-5	ND	0.5
nlorobenzene	108-90-7	ND	0.5
chloroethane	75-00-3	ND	0.5
2-Chloroethylvinyl ether	110-75-8	ND	0.5
aloroform	67-66-3	ND	0.5
hloromethane	74-87-3	ND	0.5
2-Chlorotoluene	95-49-8	ND	0.5
★ ·Chlorotoluene	106-43-4	ND	0.5
ibromochloromethane	124-48-1	ND	0.5
1,2-Dibromo-3-chloropropane	96-12-8	ND	0.5
1. 2-Dibromoethane	106-93-4	ND	0.5
Lbromomethane	74-95-3	ND	0.5
I, 2-Dichlorobenzene	95-50-1	ND	0.5
1,3-Dichlorobenzene	541-73-1	ND	0.5
4-Dichlorobenzene	106-46-7	ND	0.5
chlorodifluoromethane	75-71-8	ND	0.5
1,1-Dichloroethane	75-34-3	ND	0.5
1 2-Dichloroethane	107-06-2	ND	0.5
1-Dichloroethene	75-35-4	14	0.5
cis-1,2-Dichloroethene	156-59-2	3.2	0.5
trans-1,2-Dichloroethene	156-60-5	ND	0.5
2-Dichloroethene (total)	540-59-0	3.2	0.5

Page 12 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc. Client Reference: 50923.03

Clayton Project No. 94030.83

dentification: MW4-A

mber:

9403083-07A

Matrix/Media:

WATER

eference:

EPA 524.2

Date Sampled: Date Received:

03/04/94 03/05/94

Date Analyzed:

03/14/94

Analyst: ASC

	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
	CAS #	(ug/L)	(ug/L)
e Organic Compounds (Cont	<u> </u>		
chloropropane	78-87-5	ND	0.5
Tchloropropane	142-28-9	ND	0.5
<u>i</u> chloropropane	594-20-7	ND	0.5
chloropropene	563-58-6	ND	0.5
3-Dichloropropene	10061-01-5	ND	0.5
-1,3-Dichloropropene	10061-02-6	ND	0.5
enzene	100-41-4	ND	0.5
lorobutadiene	87-68-3	ND	0.5
anone	591-78-6	ND	5
opylbenzene	98-82-8	ND	0.5
ropyltoluene	99-87-6	ND	0.5
rene chloride	75-09-2	ND	0.5
hyl-2-pentanone	108-10-1	ND	5
alene	91-20-3	ND	0.5
ylbenzene	103-65-1	ND	0.5
utylbenzene	135-98-8	ND	0.5
<u> </u>	100-42-5	ND	0.5
utylbenzene	98-06-6	ND	0.5
,2-Tetrachloroethane	630-20-6	ND	0.5
_2-Tetrachloroethane	79-34-5	ND	0.5
loroethene	127-18-4	190	0.5
	108-88-3	ND	0.5
-Trichlorobenzene	87-61-6	ND	0.5
richlorobenzene	120-82-1	ND	0.5
richloroethane	71-55-6	1.2	0.5
-Trichloroethane	79-00-5	ND	0.5
broethene	79-01-6	29	0.5
rofluoromethane	75-69-4	3.7	0.5
-Trichloropropane	96-18-4	ND	0.5
-Trichloro-1,2,2-trifluo		1410	J. J
	76-13-1	8.4	0.5
	, O 13 1	0. 4	

Page 13 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc.

Client Reference: 50923.03 Clayton Project No. 94030.83

le Identification: MW4-A

03/04/94

b Number:

9403083-07A

Date Sampled: Date Received: 03/05/94

ple Matrix/Media:

WATER

Date Analyzed:

03/14/94

hod Reference:

EPA 524.2

Analyst:

ASC

			Method
			Detection
		Concentration	Limit
alyte	CAS #	(ug/L)	(ug/L)

<u>latile Organic Compounds (Continued)</u>

2,4-Trimethylbenzene	95-63-6	ND	0.5
1,3,5-Trimethylbenzene	108-67-8	ND	0.5
<u>Vinyl</u> chloride	75-01-4	ND	0.5
-Xylene	95-47-6	ND	0.5
💻 m-Xylenes		ND	0.5

<u>logates</u>		Recovery (%)	OC Limits (%)
4-Bromofluorobenzene	460-00-4	102	80 - 120
1 4-Dichlororbenzene-d4	3855-82-1	105	80 - 120

Not detected at or above limit of detection Information not available or not applicable

Page 14 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc. Client Reference: 50923.03

Clayton Project No. 94030.83

ple Identification: METHOD BLANK

9403083-09A

mple Matrix/Media: hod Reference:

ab Number:

WATER

EPA 524.2

Date Sampled: ___

Date Received:

Date Analyzed:

03/14/94

Analyst: ASC

		Concentration	Method Detection Limit
alyte	CAS #	(ug/L)	(ug/L)
latile Organic Compounds			
cetone	67-64-1	ND	5
benzene	71-43-2	ND	0.5
Bromobenzene	108-86-1	ND	0.5
romochloromethane	74-97-5	ND	0.5
romodichloromethane	75-27-4	ND	0.5
Bromoform	75-25-2	ND	0.5
romomethane	74-83-9	ND	0.5
-Butanone	78-93-3	ND	5
n-Butylbenzene	104-51-8	ND	0.5
<u>C</u> arbon tetrachloride	56-23-5	ND	0.5
nlorobenzene	108-90-7	ND	0.5
nloroethane	75-00-3	ND	0.5
2-Chloroethylvinyl ether	110-75-8	ND	0.5
nloroform	67-66-3	ND	0.5
nloromethane	74-87-3	ND	0.5
2-Chlorotoluene	95-49-8	ND	0.5
4-Chlorotoluene	106-43-4	ND	0.5
ibromochloromethane	124-48-1	ND	0.5
T, 2-Dibromo-3-chloropropane	96-12-8	ND	0.5
1.2-Dibromoethane	106-93-4	ND	0.5
bromomethane	74-95-3	ND	0.5
2-Dichlorobenzene	95-50-1	ND	0.5
1,3-Dichlorobenzene	541-73-1	ND	0.5
■ 4-Dichlorobenzene	106-46-7	ND	0.5
chlorodifluoromethane	75-71-8	ND	0.5
1,1-Dichloroethane	75-34-3	ND	0.5
2-Dichloroethane	107-06-2	ND	0.5
1 1-Dichloroethene	75-35-4	ND	0.5
cis-1,2-Dichloroethene	156-59-2	ND	0.5
trans-1,2-Dichloroethene	156-60-5	ND	0.5
2-Dichloroethene (total)	540-59-0	ND	0.5

Page 15 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc. Client Reference: 50923.03 Clayton Project No. 94030.83

ple Identification: METHOD BLANK

9403083-09A

ample Matrix/Media: WATER

nod Reference: EPA 524.2

ab Number:

Date Sampled:

Date Received: --

Date Analyzed: 03/14/94

Analyst:

ASC

alyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
	C21D 11	(-9/-/	· · · · · · · · · · · · · · · · · · ·
atile Organia Compounds (Cont			
<u>latile Organic Compounds (Cont</u>	Trueal		
,2-Dichloropropane	78-87-5	ND	0.5
,3-Dichloropropane	142-28-9	ND	0.5
2,2-Dichloropropane	594-20-7	ND	0.5
.1-Dichloropropene	563-58-6	ND	0.5
is-1,3-Dichloropropene	10061-01-5	ND	0.5
rans-1,3-Dichloropropene	10061-02-6	ND	0.5
thylbenzene	100-41-4	ND	0.5
exachlorobutadiene	87-68-3	ND	0.5
2-Hexanone	591-78-6	ND	5
L sopropylbenzene	98-82-8	ND	0.5
-Isopropyltoluene	99-87-6	ND	0.5
ethylene chloride	75-09-2	ND	0.5
2-Methyl-2-pentanone	108-10-1	ND	5
aphthalene	91-20-3	ND	0.5
Propylbenzene	103-65-1	ND	0.5
sec-Butylbenzene	135-98-8	ND	0.5
tyrene	100-42-5	ND	0.5
ert-Butylbenzene	98-06-6	ND	0.5
7,1,1,2-Tetrachloroethane	630-20-6	ND	0.5
L.1,2,2-Tetrachloroethane	79-34-5	ND	0.5
trachloroethene	127-18-4	ND	0.5
bluene	108-88-3	ND	0.5
1,2,3-Trichlorobenzene	87-61-6	ND	0.5
2,4-Trichlorobenzene	120-82-1	ND	0.5
1,1-Trichloroethane	71-55-6	ND	0.5
1,1,2-Trichloroethane	79-00-5	ND	0.5
Michloroethene	79-01-6	ND	0.5
ichlorofluoromethane	75-69-4	ND	0.5
,2,3-Trichloropropane	96-18-4	ND	0.5
L.1,2-Trichloro-1,2,2-trifluor			
<u></u>	76-13-1	ND	0.5

Page 16 of 17

Analytical Results

for

Clayton Environmental Consultants, Inc.

Client Reference: 50923.03 Clayton Project No. 94030.83

aple Identification: METHOD BLANK

ab Number:

9403083-09A

nple Matrix/Media:

WATER

thod Reference: EPA 524.2

Date Sampled:

Date Received:

Date Analyzed: 03/14/94

Analyst:

ASC

nalyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
platile Organic Compounds (Cont	cinued)		
.,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride -Xylene ,m-Xylenes	95-63-6 108-67-8 75-01-4 95-47-6	ND ND ND ND ND	0.5 0.5 0.5 0.5
rogates		Recovery (%)	OC Limits (%)
4-Bromofluorobenzene 1,4-Dichlororbenzene-d4	460-00-4 3855-82-1	87 83	80 - 120 80 - 120

Not detected at or above limit of detection Information not available or not applicable

The Lymn I im ENVIRONMENTAL CONSULTANTS

REQUE

ST FOR LABORATORY	Project No.									
LYTICAL SERVICES	Batch No.	Sau	しごじきむ」							
	ind. Code	1	1/	W.P.						
		/3	7 -							

A Marsh & McLennan Company

												Dat	e Logg	ged In	3/	1 9	/ B	y/ammi	
Q Name	GUSTAVO VALDIVA T	tle P		- MANA			Purch	ase Or	der No	. 50	1923							23-03	
REPORT City, City,	any CLAYTON ENVIRONME			ept. CYP			_ <u> </u>	Nan			G	J S 7	N/	> \	YAL	DIVI	X _		
Mailin	g Address 5785 CORPORATE			SUITE	15	b	Äğ	O Con	npany									Dept.	
	State, Zip CY DNESS, CA hone No. (714) 229-480 C Telefax		630	76 - (1)	15		SEND INVOICE	Add	ress	7:-									
	s Req.: Rush Charges Authorized? Phone					•	<u> </u>	TORY	, State		hay hal	AN.	ALYSI	S REC	UES	TED	ים זו יםי	Preservative adde	
		<u> - </u> _		(check i		•	Containers	(Ellel	all A	7	DOX De	Z IO	IIIdica Z	te requ	uesi, i	EIIIOI a	- "	Teservative adde	1
	ructions: (method, limit of detection, etc.) NAL YZE NO LATER THAN			Drinki	ing W	ater	l ag				/ /	/ /	/ ,					///	- 1
1	_ 1 1 _			☐ Collec			ŏ	,											1
* Explanation	n of Preservative: 311 94			State	of Ne	w York			/ N	/>		/ ,						/	
(CLIENT SAMPLE IDENTIFICATION		DATE MPLED	MATRIX/ MEDIA		VOLUME	Number	10										FOR LAN	
1	1W I - A		4/94	1/20		mel of	3	1										DIA-C	
	HWI-B	1	7	1		1	2		V		1							UZ AB	
Н	w2-A		T			1	3	V										03 A-C	
0	W2-B						2		V									CH AB	
<u> </u>	1W3-A						3	\										OS A'C	
	MW3-B						2		レ									Clo A.B	
	4W4-A						3	/										CAAC	
	MW4-B	4		V	W		2		レ									CR. A.D	
													<u> </u>			<u></u>		1	
	Collected by: LEO WILLIA	MSO	N			(print)	Colle	ctor's	Signatu	ıre: 🗡	Ze	06	1. 2	fel	Più	nes	1		
CHAIN OF	Relinquished by: Lieo W. Will	lam	un	Date/Time	4/	44 16:16	Rece	ived by		us te	20		Logie				Date/	Timey 44 16:11	<u>, </u>
CUSTODY	Relinquished by: Mustau Valdie			Days (Tippe	16:	20	Rece	ived at	Labo	0.10	mm	1	F	\sqrt{I}	To		Date	47944(2)10	、文
	Method of Shipment:			- 1117		1	Sam	ole Cor	dition	Joon I	Receipt	:	X X	cep\a	ble			her (explain)	
Authorized	by: Justero Valduie &		D	ate 3 /	41	194													İ
	(glient Signature Must Accompany	Reque			7	 _		A	$\overline{}$	1-61	x3 c	` '							İ
Please retu	rn completed form and samples to one of th	e Clay	ton Envi	ronmental (Cons	ultants, Ind	. labs	listed b								DISTR	ידו ומו	Ni:	
22345 Ro Novi MI		astain	Center	Blvd., N.W.	12	52 Quarry	Lane											Clayton Laborat	ory

Edison, NJ 08837 (313) 344-1770 (908) 225-6040

198

Kennesaw, GA 30144 (404) 499-7500

Pleasanton, CA 94566 (510) 426-2657

YELLOW - Clayton Accounting PINK - Client Retains

2/92

for

Clayton Project No. 94030.83

Clayton Lab Number:

9403083-MB

Ext./Prep. Method: Date:

1 1

Analyst: Std. Source:

Sample Matrix/Media:

WATER

Analytical Method:

Instrument ID: Date:

EPA524 2 02831 03/14/94 16:41 ASC UG/L

M940225-01W

Time: Analyst: Units:

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
1,1-Dichloroethene	ND	5.00	4.44	89	4.46	89	89	80	120	0.4	20
Benzene	ND	5.00	4.58	92	4.41	88	90	80	120	3.8	20
Chlorobenzene	. ND	5.00	4.76	95	4.63	93	94	80	120	2.8	20
Toluene	ND	5.00	4.54	91	4.34	87	89	80	120	4.5	20
Trichloroethene	ND	5.00	4.38	88	4.17	83	86	80	120	4.9	20

APPENDIX C HAZARDOUS WASTE MANIFEST

-Mark Decrees 11-	2 01	Socramente: Californ
nifest Document No.	2. Page 1	Information in the shaded an is not required by Federal la
	Vanifest Document	White the state of
2102-49	enercator (II)	
5-0426		A Service from the same of the
		12012
2 1 1 1 2	orter all location	
E. State	romporter's ID	Applied to the contract of the same profit of the party of the contract of the
Transp	orter's Phonesia	ed at the second religion of the second relig
G Siche	pelox (PA	And the second s
		الله الله الله الله الله الله الله الله
3 3 5 7 7 7 7 7 12. Containers	13. Total	-12. Unit
No. Type	Quantity	Wt/Vol EnVado Numbe
001 77	I	G
	00775	EPA/Onto
		Side
		EPA/Other in
		Stone Art Stone
	1111	EPA/Other
		State Add Selection
		E ACM
Clad	ng Codes for Was	a face Above 1847
		A SECTION AND A
and accurately described	above by proper s	hipping name and are classifi
and accurately described y according to applicable		hipping name and are classifi international laws.
y according to applicable ume and toxicity of wast	federal, state and e generated to the	international laws. degree I have determined to
y according to applicable ume and toxicity of wast or disposal currently avo	federal, state and e generated to the iilable to me which	international laws.
y according to applicable ume and toxicity of wast or disposal currently avo	federal, state and e generated to the iilable to me which	international laws. degree I have determined to minimizes the present and fute generation and select the
y according to applicable ume and toxicity of wast or disposal currently avo	federal, state and e generated to the iilable to me which	international laws. degree I have determined to minimizes the present and fu
y according to applicable ume and toxicity of wast or disposal currently avo	federal, state and e generated to the iilable to me which	degree I have determined to minimizes the present and fute generation and select the Month Day
y according to applicable ume and toxicity of wast or disposal currently avo	federal, state and e generated to the iilable to me which	degree I have determined to minimizes the present and fute generation and select the Month Day Month Day Month Day
y according to applicable ume and toxicity of wast or disposal currently avo	federal, state and e generated to the iilable to me which	degree I have determined to minimizes the present and fute generation and select the Month Day
y according to applicable ume and toxicity of wast or disposal currently avo	federal, state and e generated to the iilable to me which	degree I have determined to minimizes the present and fute generation and select the Month Day Month Day Month Day
y according to applicable ume and toxicity of wast or disposal currently avo	federal, state and e generated to the iilable to me which	degree I have determined to minimizes the present and fute generation and select the Month Day Month Day
y according to applicable ume and toxicity of wast or disposal currently avo	federal, state and e generated to the iilable to me which	degree I have determined to minimizes the present and fute generation and select the Month Day Month Day
y according to applicable ume and toxicity of wast or disposal currently avo	federal, state and e generated to the iilable to me which	degree I have determined to minimizes the present and fute generation and select the Month Day Month Day
y according to applicable ume and toxicity of wast or disposal currently ava ade a good faith effort t	federal, state and e generated to the iilable to me which o minimize my was	degree I have determined to minimizes the present and fute generation and select the Month Day Month Day
y according to applicable ume and toxicity of wast or disposal currently avo	federal, state and e generated to the iilable to me which o minimize my was	degree I have determined to minimizes the present and fute generation and select the Month Day Month Day
	2102 40 F	2102 40 B. Ros Generator U. 5-0426 2 1 1 1 D. Containers 13. Total No. Type Guantity